In this paper, we investigate some sufficient conditions for the breakdown of local smooth solutions to the three dimensional nonlinear nonlocal dissipative system modeling electro-hydrodynamics. This model is a strongly coupled system by the well-known incompressible Navier-Stokes equations and the classical Poisson-Nernst-Planck equations. We show that the maximum of the vorticity field alone controls the breakdown of smooth solutions, which reveals that the velocity field plays a more dominant role than the density functions of charged particles in the blow-up theory of the system. Moreover, some Prodi-Serrin type blow-up criteria are also established. (C) 2016 Elsevier Ltd. All rights reserved.