Magnesium Nanoparticle Plasmonics

被引:104
作者
Biggins, John S. [1 ]
Yazdi, Sadegh [2 ,6 ]
Ringe, Emilie [2 ,3 ,4 ,5 ]
机构
[1] Univ Cambridge, Dept Engn, Trumpington St, Cambridge CB2 1PZ, England
[2] Rice Univ, Dept Mat Sci & Nanoengn, 6100 Main St, Houston, TX 77005 USA
[3] Rice Univ, Dept Chem, 6100 Main St, Houston, TX 77005 USA
[4] Univ Cambridge, Dept Mat Sci & Met, 27 Charles Babbage Rd, Cambridge CB3 0FS, England
[5] Univ Cambridge, Dept Earth Sci, Downing St, Cambridge CB2 3EQ, England
[6] Univ Colorado, Renewable & Sustainable Energy Inst, Boulder, CO 80309 USA
关键词
Metal nanoparticles; localized surface plasmon resonance; magnesium; plasmonics; electron-energy loss spectroscopy; ENERGY-LOSS SPECTROSCOPY; DISCRETE-DIPOLE APPROXIMATION; ENHANCED RAMAN-SPECTROSCOPY; SURFACE-PLASMONS; METAL NANOPARTICLES; ALUMINUM NANOPARTICLES; GALLIUM NANOPARTICLES; OPTICAL-PROPERTIES; HYDROGEN STORAGE; ULTRAVIOLET;
D O I
10.1021/acs.nanolett.8b00955
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Nanoparticles of some metals (Cu/Ag/Au) sustain oscillations of their electron cloud called localized surface plasmon resonances (LSPRs). These resonances can occur at optical frequencies and be driven by light, generating enhanced electric fields and spectacular photon scattering. However, current plasmonic metals are rare, expensive, and have a limited resonant frequency range. Recently, much attention has been focused on earth-abundant Al, but Al nanoparticles cannot resonate in the IR The earth-abundant Mg nanoparticles reported here surmount this limitation. A colloidal synthesis forms hexagonal nanoplates, reflecting Mg's simple hexagonal lattice. The NPs form a thin self-limiting oxide layer that renders them stable suspended in 2-propanol solution for months and dry in air for at least two week. They sustain LSPRs observable in the far-field by optical scattering spectroscopy. Electron energy loss spectroscopy experiments and simulations reveal multiple size-dependent resonances with energies across the UV, visible, and IR The symmetry of the modes and their interaction with the underlying substrate are studied using numerical methods. Colloidally synthesized Mg thus offers a route to inexpensive, stable nanoparticles with novel shapes and resonances spanning the entire UV-vis-NIR spectrum, making them a flexible addition to the nanoplasmonics toolbox.
引用
收藏
页码:3752 / 3758
页数:7
相关论文
共 62 条
[1]   Rhodium Tripod Stars for UV Plasmonics [J].
Alcaraz de la Osa, R. ;
Sanz, J. M. ;
Barreda, A. I. ;
Saiz, J. M. ;
Gonzalez, F. ;
Everitt, H. O. ;
Moreno, F. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (22) :12572-12580
[2]   Biosensing with plasmonic nanosensors [J].
Anker, Jeffrey N. ;
Hall, W. Paige ;
Lyandres, Olga ;
Shah, Nilam C. ;
Zhao, Jing ;
Van Duyne, Richard P. .
NATURE MATERIALS, 2008, 7 (06) :442-453
[3]  
[Anonymous], 1998, Handbook of Optical Constants of Solids
[4]   Nanoplasmonics for chemistry [J].
Baffou, Guillaume ;
Quidant, Romain .
CHEMICAL SOCIETY REVIEWS, 2014, 43 (11) :3898-3907
[5]   CUTOFF WAVE-NUMBERS AND MODES OF HEXAGONAL WAVEGUIDES [J].
BAUER, L ;
REISS, EL .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1978, 35 (03) :508-514
[6]   Characterization of the Electron- and Photon-Driven Plasmonic Excitations of Metal Nanorods [J].
Bigelow, Nicholas W. ;
Vaschillo, Alex ;
Iberi, Vighter ;
Camden, Jon P. ;
Masiello, David J. .
ACS NANO, 2012, 6 (08) :7497-7504
[7]  
Binge E., 2015, SCI REP, V5, P17431
[8]   A review of the optical properties of alloys and intermetallics for plasmonics [J].
Blaber, M. G. ;
Arnold, M. D. ;
Ford, M. J. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2010, 22 (14)
[9]   Low-Loss Plasmonic Metamaterials [J].
Boltasseva, Alexandra ;
Atwater, Harry A. .
SCIENCE, 2011, 331 (6015) :290-291
[10]   Aluminum for Nonlinear Plasmonics: Resonance-Driven Polarized Luminescence of Al, Ag, and Au Nanoantennas [J].
Castro-Lopez, Marta ;
Brinks, Daan ;
Sapienza, Riccardo ;
van Hulst, Niek F. .
NANO LETTERS, 2011, 11 (11) :4674-4678