Magnesium Nanoparticle Plasmonics

被引:98
|
作者
Biggins, John S. [1 ]
Yazdi, Sadegh [2 ,6 ]
Ringe, Emilie [2 ,3 ,4 ,5 ]
机构
[1] Univ Cambridge, Dept Engn, Trumpington St, Cambridge CB2 1PZ, England
[2] Rice Univ, Dept Mat Sci & Nanoengn, 6100 Main St, Houston, TX 77005 USA
[3] Rice Univ, Dept Chem, 6100 Main St, Houston, TX 77005 USA
[4] Univ Cambridge, Dept Mat Sci & Met, 27 Charles Babbage Rd, Cambridge CB3 0FS, England
[5] Univ Cambridge, Dept Earth Sci, Downing St, Cambridge CB2 3EQ, England
[6] Univ Colorado, Renewable & Sustainable Energy Inst, Boulder, CO 80309 USA
关键词
Metal nanoparticles; localized surface plasmon resonance; magnesium; plasmonics; electron-energy loss spectroscopy; ENERGY-LOSS SPECTROSCOPY; DISCRETE-DIPOLE APPROXIMATION; ENHANCED RAMAN-SPECTROSCOPY; SURFACE-PLASMONS; METAL NANOPARTICLES; ALUMINUM NANOPARTICLES; GALLIUM NANOPARTICLES; OPTICAL-PROPERTIES; HYDROGEN STORAGE; ULTRAVIOLET;
D O I
10.1021/acs.nanolett.8b00955
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Nanoparticles of some metals (Cu/Ag/Au) sustain oscillations of their electron cloud called localized surface plasmon resonances (LSPRs). These resonances can occur at optical frequencies and be driven by light, generating enhanced electric fields and spectacular photon scattering. However, current plasmonic metals are rare, expensive, and have a limited resonant frequency range. Recently, much attention has been focused on earth-abundant Al, but Al nanoparticles cannot resonate in the IR The earth-abundant Mg nanoparticles reported here surmount this limitation. A colloidal synthesis forms hexagonal nanoplates, reflecting Mg's simple hexagonal lattice. The NPs form a thin self-limiting oxide layer that renders them stable suspended in 2-propanol solution for months and dry in air for at least two week. They sustain LSPRs observable in the far-field by optical scattering spectroscopy. Electron energy loss spectroscopy experiments and simulations reveal multiple size-dependent resonances with energies across the UV, visible, and IR The symmetry of the modes and their interaction with the underlying substrate are studied using numerical methods. Colloidally synthesized Mg thus offers a route to inexpensive, stable nanoparticles with novel shapes and resonances spanning the entire UV-vis-NIR spectrum, making them a flexible addition to the nanoplasmonics toolbox.
引用
收藏
页码:3752 / 3758
页数:7
相关论文
共 50 条
  • [1] Metal-nanoparticle plasmonics
    Pelton, Matthew
    Aizpurua, Javier
    Bryant, Garnett
    LASER & PHOTONICS REVIEWS, 2008, 2 (03) : 136 - 159
  • [2] Single nanoparticle plasmonics
    Ringe, Emilie
    Sharma, Bhavya
    Henry, Anne-Isabelle
    Marks, Laurence D.
    Van Duyne, Richard P.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (12) : 4110 - 4129
  • [3] Plasmonics in the Ultraviolet with Aluminum, Gallium, Magnesium and Rhodium
    Gutierrez, Yael
    Alcaraz de la Osa, Rodrigo
    Ortiz, Dolores
    Maria Saiz, Jose
    Gonzalez, Francisco
    Moreno, Fernando
    APPLIED SCIENCES-BASEL, 2018, 8 (01):
  • [4] Development of discrete interaction models for ultra-fine nanoparticle plasmonics
    Sorensen, Lasse K.
    Gerasimov, Valeriy S.
    Karpov, Sergey V.
    Agren, Hans
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2024, 26 (37) : 24209 - 24245
  • [5] Molecular plasmonics for biology and nanomedicine
    Zheng, Yue Bing
    Kiraly, Brian
    Weiss, Paul S.
    Huang, Tony Jun
    NANOMEDICINE, 2012, 7 (05) : 751 - 770
  • [6] Physics Models of Plasmonics: Single Nanoparticle, Complex Single Nanoparticle, Nanodimer, and Single Nanoparticle over Metallic Thin Film
    Li, Wenbing
    PLASMONICS, 2018, 13 (03) : 997 - 1014
  • [7] Fine-tuning of plasmonics by Au@AuY/Au core-shell nanoparticle monolayer for enhancement of third-order nonlinearity
    Liu, Yong
    Pang, Chi
    Amekura, Hiroshi
    Schumann, Thomas
    Liu, Peng
    Wei, Zhixian
    Liu, Haocheng
    Li, Rang
    APPLIED SURFACE SCIENCE, 2023, 631
  • [8] Rhodium Tripod Stars for UV Plasmonics
    Alcaraz de la Osa, R.
    Sanz, J. M.
    Barreda, A. I.
    Saiz, J. M.
    Gonzalez, F.
    Everitt, H. O.
    Moreno, F.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (22): : 12572 - 12580
  • [9] Nonlinear plasmonics with gold nanoparticle antennas
    Palomba, Stefano
    Danckwerts, Matthias
    Novotny, Lukas
    JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS, 2009, 11 (11):
  • [10] Quantum plasmonics with a metal nanoparticle array
    Lee, Changhyoup
    Tame, Mark
    Lim, James
    Lee, Jinhyoung
    PHYSICAL REVIEW A, 2012, 85 (06):