Discrete Ginzburg-Landau solitons

被引:65
作者
Efremidis, NK [1 ]
Christodoulides, DN [1 ]
机构
[1] Univ Cent Florida, CREOL, Sch Opt, Orlando, FL 32816 USA
来源
PHYSICAL REVIEW E | 2003年 / 67卷 / 02期
关键词
D O I
10.1103/PhysRevE.67.026606
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We demonstrate that discrete solitons are possible in Ginzburg-Landau lattices. As a result of discreteness, we find that this system exhibits a host of features that have no counterpart whatsoever in either the continuous limit or in other conservative discrete models.
引用
收藏
页数:5
相关论文
共 33 条
[1]  
Akhmediev N., 1997, SOLITONS NONLINEAR P
[2]   Singularities and special soliton solutions of the cubic-quintic complex Ginzburg-Landau equation [J].
Akhmediev, NN ;
Afanasjev, VV ;
SotoCrespo, JM .
PHYSICAL REVIEW E, 1996, 53 (01) :1190-1201
[3]   Macroscopic quantum interference from atomic tunnel arrays [J].
Anderson, BP ;
Kasevich, MA .
SCIENCE, 1998, 282 (5394) :1686-1689
[4]  
[Anonymous], 1990, DISSIPATIVE STRUCTUR, DOI DOI 10.1016/B978-0-08-092445-8.50011-0
[5]  
[Anonymous], 1999, ADV OPTOEL
[6]   The world of the complex Ginzburg-Landau equation [J].
Aranson, IS ;
Kramer, L .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :99-143
[7]  
ARECCHI FT, 2002, BOSE EINSTEIN CONDEN
[8]   DISCRETE SELF-FOCUSING IN NONLINEAR ARRAYS OF COUPLED WAVE-GUIDES [J].
CHRISTODOULIDES, DN ;
JOSEPH, RI .
OPTICS LETTERS, 1988, 13 (09) :794-796
[9]   LINEARITY INSIDE NONLINEARITY - EXACT-SOLUTIONS TO THE COMPLEX GINZBURG-LANDAU EQUATION [J].
CONTE, R ;
MUSETTE, M .
PHYSICA D, 1993, 69 (1-2) :1-17
[10]   Stable vortex solitons in the two-dimensional Ginzburg-Landau equation [J].
Crasovan, LC ;
Malomed, BA ;
Mihalache, D .
PHYSICAL REVIEW E, 2001, 63 (01)