Stability theories of nanobubbles at solid-liquid interface: A review

被引:99
|
作者
Sun, Yujin [1 ,2 ]
Xie, Guangyuan [1 ,2 ]
Peng, Yaoli [1 ,2 ]
Xia, Wencheng [1 ,2 ]
Sha, Jie [1 ,2 ]
机构
[1] China Univ Min & Technol, Sch Chem Engn & Technol, Xuzhou 221116, Peoples R China
[2] China Univ Min & Technol, Minist Educ, Key Lab Coal Proc & Efficient Utilizat, Xuzhou 221116, Peoples R China
基金
中国国家自然科学基金;
关键词
Solid-liquid interface; Nanobubbles; Lifetime; Stability theories; ATOMIC-FORCE MICROSCOPY; HYDROPHOBIC SURFACES; WATER INTERFACE; NANO-BUBBLES; DENSITY; GAS; FLOTATION; HETEROCOAGULATION; ATTRACTION; SIMULATION;
D O I
10.1016/j.colsurfa.2016.01.050
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
As nanobubbles are of far-reaching application in interface science, mining science, medical treatment, sewage treatment and other fields, researchers have carried out considerable research on the properties and influencing factors of nanobubbles. However, the abnormal lifetime of nanobubbles super stability is still an open question. According to the classical thermodynamic theories, bubbles at the nanoscale in water should be dissolved quickly, but a great number of research results in recent years indicate that nanobubbles can exist at the solid-liquid interface stably. The thorough understanding and mastery of the underlying stability mechanism of nanobubbles is the premise of the research and applications of nanobubbles. In this paper, the interfacial nanobubbles stability theories and models in recent ten years are reviewed, including contamination (impurity) theory, dynamic equilibrium theory and its extension theory, contact line pinning effect and nanobubbles internal pressure theory, etc. Furthermore, some suggestions for the future research on stability theories are proposed and the research focuses and development directions of nanobubbles in the future are also prospected. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:176 / 186
页数:11
相关论文
共 50 条
  • [21] SOLID-LIQUID INTERFACE STABILITY DURING SOLIDIFICATION OF DILUTE TERNARY ALLOYS
    COATES, DE
    SUBRAMANIAN, SV
    PURDY, GR
    TRANSACTIONS OF THE METALLURGICAL SOCIETY OF AIME, 1968, 242 (05): : 800 - +
  • [22] THEORY OF STABILITY OF SOLID-LIQUID INTERFACE UNDER CONSTITUTIONAL SUPERCOOLING (2)
    DELVES, RT
    PHYSICA STATUS SOLIDI, 1966, 17 (01): : 119 - &
  • [23] STABILITY OF SOLID-LIQUID DISPERSIONS
    IORDACHE, O
    BOLOGA, V
    PLESU, V
    CHEMICAL ENGINEERING SCIENCE, 1988, 43 (10) : 2655 - 2659
  • [24] Modeling the electrified solid-liquid interface
    Rossmeisl, Jan
    Skulason, Egill
    Bjorketun, Marten E.
    Tripkovic, Vladimir
    Norskov, Jens K.
    CHEMICAL PHYSICS LETTERS, 2008, 466 (1-3) : 68 - 71
  • [25] Solid-liquid interface energy of silicon
    Jian, Zengyun
    Kuribayashi, Kazuhiko
    Jie, Wanqi
    Chang, Fange
    ACTA MATERIALIA, 2006, 54 (12) : 3227 - 3232
  • [26] Adsorption of nanoparticles at the solid-liquid interface
    Brenner, Thorsten
    Paulus, Michael
    Schroer, Martin A.
    Tiemeyer, Sebastian
    Sternemann, Christian
    Moeller, Johannes
    Tolan, Metin
    Degen, Patrick
    Rehage, Heinz
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2012, 374 : 287 - 290
  • [27] POLYMER ADSORPTION AT SOLID-LIQUID INTERFACE
    KILLMANN, E
    CHEMIE INGENIEUR TECHNIK, 1974, 46 (18) : 767 - 769
  • [28] DYNAMICS OF THE HELIUM SOLID-LIQUID INTERFACE
    THOULOUZE, D
    CASTAING, B
    PUECH, L
    AIP CONFERENCE PROCEEDINGS, 1983, (103) : 357 - 370
  • [29] PHOTOCHEMICAL PROCESSES AT THE SOLID-LIQUID INTERFACE
    KAVANAGH, RJ
    THOMAS, JK
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1994, 208 : 150 - COLL
  • [30] DESCRIPTION OF MELTING AND SOLID-LIQUID INTERFACE
    BOLLING, GF
    CANADIAN METALLURGICAL QUARTERLY, 1969, 8 (02) : 183 - &