Spectrometer channel characterization for the airborne remote earth sensor (ARES)

被引:1
|
作者
Lisowski, JJ
Najarian, MA
机构
关键词
D O I
10.1117/12.257170
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
The ARES (Airborne Remote Earth Sensing) program employs a dual mode instrument for the collection of calibrated IR data. The instrument can be used as either an imaging radiometer (Staring Radiometer (STR)), or as an imaging spectrometer (Spatially Scanning Dispersive Spectrometer (SSDS)). In the SSDS mode, the instrument is capable of resolving 75 bands in the 2 mu m to 6 mu m region. Spectral separation is achieved by spatial dispersion of incoming radiation across the FPA using a bi-prism. As with other instruments of this type, mechanical and optical imperfections produce errors in spectral registration and radiometric calibrations; non-uniform dispersion by optics and a finite size for the FPA elements produce imperfect bandpass characteristics, most notably channel crosstalk. The methods developed at Lockheed-Martin Advanced Technology Center (LMATC), the sensor contractors, and at SciTec to characterize the spectral response of each spectrometer channel using a scanned monochromator and normalization algorithms will be discussed.
引用
收藏
页码:204 / 214
页数:11
相关论文
共 50 条
  • [1] The airborne remote earth sensing (ARES) program: An operational airborne MWIR imaging spectrometer and applications
    Bishop, KD
    Diestel, MJ
    HYPERSPECTRAL REMOTE SENSING AND APPLICATIONS, 1996, 2821 : 183 - 194
  • [2] Spectroradiometric requirements for the reflective module of the airborne spectrometer ARES
    Müller, A
    Richter, R
    Habermeyer, M
    Dech, S
    Segl, K
    Kaufmann, H
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2005, 2 (03) : 329 - 332
  • [3] Spectral and radiometric requirements for the airborne thermal imaging spectrometer ARES
    Richter, R
    Müller, A
    Habermeyer, M
    Dech, S
    Segl, K
    Kaufmann, H
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2005, 26 (15) : 3149 - 3162
  • [4] Characterization of an Advanced Airborne Radiation Detector System for the ARES Project
    Quiter, Brian J.
    Bandstra, Mark S.
    Joshi, Tenzing H.
    Maltz, Jonathan
    Zoglauer, Andreas
    Vetter, Kai
    2015 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (NSS/MIC), 2015,
  • [5] Airborne VNIR and SWIR Imaging Spectrometer and its Multi-sensor Remote Sensing Applications
    Sun, Xiuhong
    Baker, James J.
    Coronado, Patrick L.
    Stetina, Fran
    2006 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-8, 2006, : 1103 - +
  • [6] AIRBORNE IMAGING SPECTROMETER - A NEW TOOL FOR REMOTE-SENSING
    VANE, G
    GOETZ, AFH
    WELLMAN, JB
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1984, 22 (06): : 546 - 549
  • [7] Remote sensing of water quality monitoring using an airborne imaging spectrometer
    Shu, Xiaozhou
    Wang, Junfa
    Shen, Mingming
    Kuang, Dingbo
    Hongwai Yu Haomibo Xuebao/Journal of Infrared and Millimeter Waves, 2000, 19 (04): : 273 - 276
  • [8] Remote sensing of water quality monitoring using an airborne imaging spectrometer
    Shu, XZ
    Wang, JF
    Shen, MM
    Kuang, DB
    JOURNAL OF INFRARED AND MILLIMETER WAVES, 2000, 19 (04) : 273 - 276
  • [9] An airborne A-band spectrometer for remote sensing of aerosol and cloud properties
    Pitts, M
    Hansen, G
    Lucker, P
    REMOTE SENSING OF CLOUDS AND THE ATMOSPHERE VII, 2003, 4882 : 353 - 362
  • [10] Characterization and calibration of the CASI airborne imaging spectrometer for BOREAS
    Gray, L.
    Freemantle, J.
    Shepherd, P.
    Miller, J.
    Harron, J.
    Herson, C.
    Canadian Journal of Remote Sensing, 1997, 23 (02): : 188 - 195