Notes on AT-algebras and extensions of AT-algebras by K

被引:1
作者
Yao, Hongliang [1 ,2 ]
Fang, Xiaochun [1 ]
机构
[1] Tongji Univ, Dept Math, Shanghai 200092, Peoples R China
[2] Nanjing Univ Sci & Technol, Sch Sci, Nanjing 210014, Peoples R China
基金
中国国家自然科学基金;
关键词
LIMITS;
D O I
10.1112/blms/bdp124
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
H. Lin and H. Su classified AT-algebras of real rank zero. An AT-algebra often becomes an extension of an AT-algebra by an AF-algebra. In this paper, we define a new invariant pi(A) of C*-algebra A by partial isometries and give a necessary condition on which a C*-algebra is an AT-algebra. We demonstrate that there is an essential extension of an AT-algebra with real rank zero by K which is not an AT-algebra.
引用
收藏
页码:275 / 281
页数:7
相关论文
共 49 条
[31]   Inductive Systems of C *-Algebras over Posets: A Survey [J].
Gumerov, R. N. ;
Lipacheva, E. V. .
LOBACHEVSKII JOURNAL OF MATHEMATICS, 2020, 41 (04) :644-654
[32]   Isomorphisms and automorphisms of discrete multiplier Hopf C*-algebras [J].
Kucerovsky, Dan Z. .
POSITIVITY, 2015, 19 (01) :161-175
[33]   Strata Hasse invariants, Hecke algebras and Galois representations [J].
Goldring, Wushi ;
Koskivirta, Jean-Stefan .
INVENTIONES MATHEMATICAE, 2019, 217 (03) :887-984
[34]   On classification of non-unital amenable simple C*-algebras, II [J].
Gong, Guihua ;
Lin, Huaxin .
JOURNAL OF GEOMETRY AND PHYSICS, 2020, 158
[35]   Real Rank and Topological Dimension of Higher-Rank Graph Algebras [J].
Pask, David ;
Sierakowski, Adam ;
Sims, Aidan .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2017, 66 (06) :2137-2168
[36]   Rectification of weak product algebras over an operad in Cat and Top and applications [J].
Fiedorowicz, Zbigniew ;
Stelzer, Manfred ;
Vogt, Rainer M. .
ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2016, 16 (02) :711-755
[37]   Finite simple labeled graph C-algebras of Cantor minimal subshifts [J].
Jeongal, Ja A. ;
Kang, Eun Ji ;
Kim, Sun Ho ;
Park, Gi Hyun .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 446 (01) :395-410
[38]   The formal theory of hopf algebras Part I: Hopf monoids in a monoidal category [J].
Porst, Hans-E. .
QUAESTIONES MATHEMATICAE, 2015, 38 (05) :631-682
[39]   Inclusion Theorems for the Moyal Multiplier Algebras of Generalized Gelfand-Shilov Spaces [J].
Soloviev, Michael .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2021, 93 (05)
[40]   Homotopy colimits of algebras over Cat-operads and iterated loop spaces [J].
Fiedorowicz, Z. ;
Stelzer, M. ;
Vogt, R. M. .
ADVANCES IN MATHEMATICS, 2013, 248 :1089-1155