Repdigits as Product of Terms of k-Bonacci Sequences

被引:6
作者
Coufal, Petr [1 ]
Trojovsky, Pavel [2 ]
机构
[1] Univ Hradec Kralove, Fac Sci, Dept Appl Cybernet, Hradec Kralove 50003, Czech Republic
[2] Univ Hradec Kralove, Fac Sci, Dept Math, Hradec Kralove 50003, Czech Republic
关键词
k-generalized Fibonacci numbers; linear forms in logarithms; reduction method; FIBONACCI NUMBERS; EULER FUNCTIONS; LUCAS-NUMBERS; SUMS; PELL;
D O I
10.3390/math9060682
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For any integer k >= 2, the sequence of the k-generalized Fibonacci numbers (or k-bonacci numbers) is defined by the k initial values F-(k-2)(k)=...=F0(k)=0 and F1(k)=1 and such that each term afterwards is the sum of the k preceding ones. In this paper, we search for repdigits (i.e., a number whose decimal expansion is of the form aa horizontal ellipsis a, with a is an element of[1,9]) in the sequence (F(n)((k))F(n)((k+m)))n, for m is an element of[1,9]. This result generalizes a recent work of Bednarik and Trojovska (the case in which (k,m)=(2,1)). Our main tools are the transcendental method (for Diophantine equations) together with the theory of continued fractions (reduction method).
引用
收藏
页数:10
相关论文
共 44 条
[1]   Pell and Pell-Lucas Numbers as Sums of Two Repdigits [J].
Adegbindin, Chefiath ;
Luca, Florian ;
Togbe, Alain .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (02) :1253-1271
[2]   Fibonacci numbers which are concatenations of two repdigits [J].
Alahmadi, Adel ;
Altassan, Alaa ;
Luca, Florian ;
Shoaib, Hatoon .
QUAESTIONES MATHEMATICAE, 2021, 44 (02) :281-290
[3]  
[Anonymous], 2011, P 14 INT C FIBONACCI
[4]  
Ballew D. W., 1975, J RECREATIONAL MATH, V8, P96
[5]   Repdigits as Product of Fibonacci and Tribonacci Numbers [J].
Bednarik, Dusan ;
Trojovska, Eva .
MATHEMATICS, 2020, 8 (10) :1-8
[6]  
Bitim BD, 2019, PERIOD MATH HUNG, V79, P210, DOI 10.1007/s10998-019-00287-0
[7]   Repdigits as Euler functions of Lucas numbers [J].
Bravo, Jhon J. ;
Faye, Bernadette ;
Luca, Florian ;
Tall, Amadou .
ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2016, 24 (02) :105-126
[8]  
Bravo JJ, 2015, MONATSH MATH, V176, P31, DOI 10.1007/s00605-014-0622-6
[9]   On a conjecture about repdigits in k-generalized Fibonacci sequences [J].
Bravo, Jhon J. ;
Luca, Florian .
PUBLICATIONES MATHEMATICAE-DEBRECEN, 2013, 82 (3-4) :623-639
[10]  
BRAVO JHON J., 2012, Rev.colomb.mat., V46, P67