A mathematical treatment of integrated Ca dynamics within the ventricular myocyte

被引:415
作者
Shannon, TR
Wang, F
Puglisi, J
Weber, C
Bers, DM [1 ]
机构
[1] Loyola Univ, Dept Physiol, Maywood, IL 60153 USA
[2] Rush Univ, Dept Mol Biophys & Physiol, Chicago, IL USA
关键词
D O I
10.1529/biophysj.104.047449
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
We have developed a detailed mathematical model for Ca2+ handling and ionic currents in the rabbit ventricular myocyte. The objective was to develop a model that: 1), accurately reflects Ca-dependent Ca release; 2), uses realistic parameters, particularly those that concern Ca transport from the cytosol; 3), comes to steady state; 4), simulates basic excitation-contraction coupling phenomena; and 5), runs on a normal desktop computer. The model includes the following novel features: 1), the addition of a subsarcolemmal compartment to the other two commonly formulated cytosolic compartments (junctional and bulk) because ion channels in the membrane sense ion concentrations that differ from bulk; 2), the use of realistic cytosolic Ca buffering parameters; 3), a reversible sarcoplasmic reticulum (SR) Ca pump; 4), a scheme for Na-Ca exchange transport that is [Na](i) dependent and allosterically regulated by [Ca](i); and 5), a practical model of SR Ca release including both inactivation/adaptation and SR Ca load dependence. The data describe normal electrical activity and Ca handling characteristics of the cardiac myocyte and the SR Ca load dependence of these processes. The model includes a realistic balance of Ca removal mechanisms (e.g., SR Ca pump versus Na-Ca exchange), and the phenomena of rest decay and frequency-dependent inotropy. A particular emphasis is placed upon reproducing the nonlinear dependence of gain and fractional SR Ca release upon SR Ca load. We conclude that this model is more robust than many previously existing models and reproduces many experimental results using parameters based largely on experimental measurements in myocytes.
引用
收藏
页码:3351 / 3371
页数:21
相关论文
共 107 条
[1]   PROCESSES THAT REMOVE CALCIUM FROM THE CYTOPLASM DURING EXCITATION-CONTRACTION COUPLING IN INTACT RAT-HEART CELLS [J].
BALKE, CW ;
EGAN, TM ;
WIER, WG .
JOURNAL OF PHYSIOLOGY-LONDON, 1994, 474 (03) :447-462
[2]   RELAXATION IN RABBIT AND RAT CARDIAC-CELLS - SPECIES-DEPENDENT DIFFERENCES IN CELLULAR MECHANISMS [J].
BASSANI, JWM ;
BASSANI, RA ;
BERS, DM .
JOURNAL OF PHYSIOLOGY-LONDON, 1994, 476 (02) :279-293
[3]   TWITCH-DEPENDENT SR CA ACCUMULATION AND RELEASE IN RABBIT VENTRICULAR MYOCYTES [J].
BASSANI, JWM ;
BASSANI, RA ;
BERS, DM .
AMERICAN JOURNAL OF PHYSIOLOGY, 1993, 265 (02) :C533-C540
[4]   CA-2+ CYCLING BETWEEN SARCOPLASMIC-RETICULUM AND MITOCHONDRIA IN RABBIT CARDIAC MYOCYTES [J].
BASSANI, JWM ;
BASSANI, RA ;
BERS, DM .
JOURNAL OF PHYSIOLOGY-LONDON, 1993, 460 :603-621
[5]   FRACTIONAL SR CA RELEASE IS REGULATED BY TRIGGER CA AND SR CA CONTENT IN CARDIAC MYOCYTES [J].
BASSANI, JWM ;
YUAN, WL ;
BERS, DM .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 1995, 268 (05) :C1313-C1319
[6]   Action potential duration determines sarcoplasmic reticulum Ca2+ reloading in mammalian ventricular myocytes [J].
Bassani, RA ;
Altamirano, J ;
Puglisi, JL ;
Bers, DM .
JOURNAL OF PHYSIOLOGY-LONDON, 2004, 559 (02) :593-609
[7]   RELAXATION IN FERRET VENTRICULAR MYOCYTES - ROLE OF THE SARCOLEMMAL CA ATPASE [J].
BASSANI, RA ;
BASSANI, JWM ;
BERS, DM .
PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, 1995, 430 (04) :573-578
[8]   MITOCHONDRIAL AND SARCOLEMMAL CA2+ TRANSPORT REDUCE [CA2+](I) DURING CAFFEINE CONTRACTURES IN RABBIT CARDIAC MYOCYTES [J].
BASSANI, RA ;
BASSANI, JWM ;
BERS, DM .
JOURNAL OF PHYSIOLOGY-LONDON, 1992, 453 :591-608
[9]   CLASSES OF CALCIUM CHANNELS IN VERTEBRATE CELLS [J].
BEAN, BP .
ANNUAL REVIEW OF PHYSIOLOGY, 1989, 51 :367-384
[10]   RECONSTRUCTION OF ACTION POTENTIAL OF VENTRICULAR MYOCARDIAL FIBERS [J].
BEELER, GW ;
REUTER, H .
JOURNAL OF PHYSIOLOGY-LONDON, 1977, 268 (01) :177-210