Computation of magnetic anomalies and gradients for spatial arbitrary posture regular body

被引:0
|
作者
Hong Dongming [1 ,2 ]
Yao Changli [1 ,2 ]
Zheng Yuanman [1 ,2 ]
Guo Wei [1 ,2 ]
Luo Yao [1 ,3 ]
机构
[1] China Univ Geosci, Key Lab Geodetect, Minist Educ, Beijing 100083, Peoples R China
[2] China Univ Geosci, Sch Geophys & Informat Technol, Beijing 100083, Peoples R China
[3] China Aero Geophys Survey & Remote Sensing Ctr La, Beijing 100083, Peoples R China
基金
国家高技术研究发展计划(863计划);
关键词
regular magnetic body; spatial posture; coordinate system transformation; transformation matrix; forward calculation; BODIES; GRAVITY;
D O I
10.1007/s12583-009-0085-1
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
In the interaction computation for 3D gravity and magnetic anomalies due to arbitrarily shaped homogenous magnetized polyhedron model composed of triangular facets, there are many difficult points, such as mass computing, absence of a mature computer technique in 3D geological body modeling, inconvenient human-computer interaction, hard program coding, etc.. Based on the formulae of the magnetic field due to horizontal regular bodies, and by applying forward theory with the three-dimensional Cartesian coordinate system transformation, the forward problems of magnetic anomalies and gradient tensors for arbitrary slantwise regular bodies were solved. It is shown that the magnetic calculating expressions of the arbitrary posture regular body are corrected by comparing results with the homogeneous polyhedral body model outcome data. Furthermore, in the same condition, the former significantly reduced forward time. Applying a new forward method of regular body expressions in arbitrary posture, developed software for interaction computation between the 3D geological body model and magnetic field has advantages of fast calculation speed, easy manipulation, etc..
引用
收藏
页码:995 / 1002
页数:8
相关论文
共 14 条
  • [1] Computation of Magnetic Anomalies and Gradients for Spatial Arbitrary Posture Regular Body
    洪东明
    姚长利
    郑元满
    郭伟
    骆遥
    Journal of Earth Science, 2009, 20 (06) : 995 - 1002
  • [2] Computation of magnetic anomalies and gradients for spatial arbitrary posture regular body
    Dongming Hong
    Changli Yao
    Yuanman Zheng
    Wei Guo
    Yao Luo
    Journal of Earth Science, 2009, 20 : 995 - 1002
  • [3] Computation of Magnetic Anomalies Caused by Two-Dimensional Structures of Arbitrary Shape: Derivation and Matlab Implementation
    Kravchinsky, Vadim A.
    Hnatyshin, Danny
    Lysak, Benjamin
    Alemie, Wubshet
    GEOPHYSICAL RESEARCH LETTERS, 2019, 46 (13) : 7345 - 7351
  • [4] Magnetic Anomalies Caused by 3D Polyhedral Structures With Arbitrary Polynomial Magnetization
    Ren, Zhengyong
    Zhang, Yuanlei
    Zhong, Yiyuan
    Pan, Kejia
    Wu, Qihong
    Tang, Jingtian
    GEOPHYSICAL RESEARCH LETTERS, 2022, 49 (18)
  • [5] Computation of magnetic gradients due to three-dimensional bodies
    Changli Yao
    Zhining Guan
    Science in China Series D: Earth Sciences, 1997, 40 : 293 - 299
  • [6] Computation of magnetic gradients due to three-dimensional bodies
    姚长利
    管志宁
    ScienceinChina(SeriesD:EarthSciences), 1997, (03) : 293 - 299
  • [7] Computation of magnetic gradients due to three-dimensional bodies
    Yao, CL
    Guan, ZN
    SCIENCE IN CHINA SERIES D-EARTH SCIENCES, 1997, 40 (03): : 293 - 299
  • [8] Forward modeling of gravity, gravity gradients, and magnetic anomalies due to complex bodies
    Luo Yao
    Yao Changli
    JOURNAL OF CHINA UNIVERSITY OF GEOSCIENCES, 2007, 18 (03) : 280 - 286
  • [9] Forward Modeling of Gravity,Gravity Gradients,and Magnetic Anomalies due to Complex Bodies
    骆遥
    姚长利
    Journal of China University of Geosciences, 2007, (03) : 280 - 286
  • [10] Optimizing depth estimates from magnetic anomalies using spatial analysis tools
    Curto, Julia B.
    Diniz, Tatiana
    Vidotti, Roberta M.
    Blakely, Richard J.
    Fuck, Reinhardt A.
    COMPUTERS & GEOSCIENCES, 2015, 84 : 1 - 9