On the computation of nonhyperbolic fixed points

被引:1
作者
Graça, MM [1 ]
机构
[1] Univ Tecn Lisboa, Dept Matemat, Inst Super Tecn, P-1049001 Lisbon, Portugal
关键词
fixed point; nonhyperbolic; super-attracting fixed point; iteration function; order of covergence;
D O I
10.1080/10586458.2002.10504700
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In order to deal with nonhyperbolic fixed points of a given real iteration function g, we construct new iteration functions C which will be called combined. When a nonhyperbolic fixed point of g becomes a super attractor fixed point of C, the iteration function C is called flat. Some flat iteration functions are constructed based on Newton's iteration function. Several numerical examples illustrating the good properties of flat iteration functions are presented.
引用
收藏
页码:477 / 485
页数:9
相关论文
共 17 条
[1]  
Brezinski C., 1991, Extrapolation Methods, Theory and Practice, DOI DOI 10.1016/B978-0-444-88814-3.50004-0
[2]  
Burden RL., 1989, NUMERICAL ANAL
[3]   Fractal basins of attraction associated with a damped Newton's method [J].
Epureanu, BI ;
Greenside, HS .
SIAM REVIEW, 1998, 40 (01) :102-109
[4]   ACCELERATED CONVERGENCE IN NEWTON METHOD [J].
GERLACH, J .
SIAM REVIEW, 1994, 36 (02) :272-276
[5]   NEWTON METHOD FOR MULTIPLE ROOTS [J].
GILBERT, WJ .
COMPUTERS & GRAPHICS, 1994, 18 (02) :227-229
[6]  
Golubitsky M., 1985, SINGULARITIES GROUPS
[7]  
Govaerts W.J, 2000, Numerical Methods for Bifurcations of Dynamical Equilibria
[8]  
Henrici P., 1964, ELEMENTS NUMERICAL A
[9]  
Holmgren R., 1996, A First Course in Discrete Dynamical Systems
[10]  
ISAACSON E, 1966, ANAL NUMERICAL METHO