A Review of Thermal Error Modeling Methods for Machine Tools

被引:58
作者
Li, Yang [1 ]
Yu, Maolin [1 ]
Bai, Yinming [1 ]
Hou, Zhaoyang [1 ]
Wu, Wenwu [2 ,3 ]
机构
[1] Xi An Jiao Tong Univ, Sch Mech Engn, Xian 710049, Peoples R China
[2] Xian Univ Technol, Key Lab NC Machine Tools & Integrated Mfg, Educ Minist, Xian 710048, Peoples R China
[3] Xian Univ Technol, Key Lab Mfg Equipment Shaanxi Prov, Xian 710048, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2021年 / 11卷 / 11期
基金
中国国家自然科学基金;
关键词
precision machine tool; machine tool thermal error; thermal error compensation; thermal error modeling method; REAL-TIME COMPENSATION; FEED DRIVE SYSTEM; NEURAL-NETWORK; POSITIONING ERROR; ACCURACY ENHANCEMENT; MOTORIZED SPINDLE; PART II; PREDICTION; IMPROVEMENT;
D O I
10.3390/app11115216
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Thermal error caused by thermal deformation is one of the most significant factors influencing the accuracy of the machine tool. Compensation is a practical and efficient method to reduce the thermal error. Among all the thermal error compensation processes, thermal error modeling is the premise and basis because the effectiveness of the compensation is directly determined by the accuracy and robustness of modeling. In this paper, an overview of the thermal error modeling methods that have been researched and applied in the past ten years is presented. First, the modeling principle and compensation methods of machine tools are introduced. Then, the methods are classified and summarized in detail. Finally, the future research trend of thermal error modeling is forecasted.
引用
收藏
页数:16
相关论文
共 100 条
  • [61] Thermal error measurement and modelling in machine tools. Part II. Hybrid Bayesian Network - support vector machine model
    Ramesh, R
    Mannan, MA
    Poo, AN
    Keerthi, SS
    [J]. INTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTURE, 2003, 43 (04) : 405 - 419
  • [62] Support vector machines model for classification of thermal error in machine tools
    Ramesh, R
    Mannan, MA
    Poo, AN
    [J]. INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2002, 20 (02) : 114 - 120
  • [63] Ren X., 2011, P INT C EL INF CONTR
  • [64] Bayesian neural network-based thermal error modeling of feed drive system of CNC machine tool
    Shi, Hu
    Jiang, Chunping
    Yan, Zongzhuo
    Tao, Tao
    Mei, Xuesong
    [J]. INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2020, 108 (9-10) : 3031 - 3044
  • [65] Investigation into effect of thermal expansion on thermally induced error of ball screw feed drive system of precision machine tools
    Shi, Hu
    Ma, Chi
    Yang, Jun
    Zhao, Liang
    Mei, Xuesong
    Gong, Guofang
    [J]. INTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTURE, 2015, 97 : 60 - 71
  • [66] Su Tie-ming, 2011, Modular Machine Tool & Automatic Manufacturing Technique, P1
  • [67] [谭峰 Tan Feng], 2020, [仪器仪表学报, Chinese Journal of Scientific Instrument], V41, P79
  • [68] 基于集成BP神经网络的数控机床主轴热误差建模
    谭峰
    殷鸣
    彭骥
    卫亚斌
    殷国富
    [J]. 计算机集成制造系统, 2018, 24 (06) : 1383 - 1390
  • [69] An Unsupervised Regularization and Dropout based Deep Neural Network and Its Application for Thermal Error Prediction
    Tian, Yang
    Pan, Guangyuan
    [J]. APPLIED SCIENCES-BASEL, 2020, 10 (08):
  • [70] A research on the grey prediction model GM(1,n)
    Tien, Tzu-Li
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (09) : 4903 - 4916