TL-NID: Deep Neural Network with Transfer Learning for Network Intrusion Detection

被引:23
|
作者
Masum, Mohammad [1 ]
Shahriar, Hossain [2 ]
机构
[1] Kennesaw State Univ, Analyt & Data Sci Inst, Kennesaw, GA 30144 USA
[2] Kennesaw State Univ, Dept Informat Technol, Marietta, GA USA
来源
INTERNATIONAL CONFERENCE FOR INTERNET TECHNOLOGY AND SECURED TRANSACTIONS (ICITST-2020) | 2020年
关键词
Transfer learning; Pre-trained model; VGG-16; Deep neural network; Network intrusion detection;
D O I
10.23919/ICITST51030.2020.9351317
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Network intrusion detection systems (NIDSs) play an essential role in the defense of computer networks by identifying a computer networks' unauthorized access and investigating potential security breaches. Traditional NIDSs encounters difficulties to combat newly created sophisticated and unpredictable security attacks. Hence, there is an increasing need for automatic intrusion detection solution that can detect malicious activities more accurately and prevent high false alarm rates (FPR). In this paper, we propose a novel network intrusion detection framework using a deep neural network based on the pretrained VGG-16 architecture. The framework, TL-NID (Transfer Learning for Network Intrusion Detection), is a two-step process where features are extracted in the first step, using VGG-16 pre-trained on ImageNet dataset and in the 2nd step a deep neural network is applied to the extracted features for classification. We applied TL-NID on NSL-KDD, a benchmark dataset for network intrusion, to evaluate the performance of the proposed framework. The experimental results show that our proposed method can effectively learn from the NSL-KDD dataset with producing a realistic performance in terms of accuracy, precision, recall, and false alarm. This study also aims to motivate security researchers to exploit different state-of-the-art pre-trained models for network intrusion detection problems through valuable knowledge transfer.
引用
收藏
页码:64 / 70
页数:7
相关论文
共 50 条
  • [41] Intrusion Detection System Based on Deep Neural Network and Incremental Learning for In-Vehicle CAN Networks
    Lin, Jiaying
    Wei, Yehua
    Li, Wenjia
    Long, Jing
    UBIQUITOUS SECURITY, 2022, 1557 : 255 - 267
  • [42] An Explainable and Optimized Network Intrusion Detection Model using Deep Learning
    Haripriya, C.
    Jagadeesh, M. P. Prabhudev
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (01) : 482 - 488
  • [43] Deep learning methods in network intrusion detection: A survey and an objective comparison
    Gamage, Sunanda
    Samarabandu, Jagath
    JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, 2020, 169
  • [44] Autoencoder-based deep metric learning for network intrusion detection
    Andresini, Giuseppina
    Appice, Annalisa
    Malerba, Donato
    INFORMATION SCIENCES, 2021, 569 (569) : 706 - 727
  • [45] Amalgamation of Transfer Learning and Deep Convolutional Neural Network for Multiple Fault Detection in SCIM
    Kumar, Prashant
    Hati, Ananda Shankar
    Padmanaban, Sanjeevikumar
    Leonowicz, Zbigniew
    Chakrabarti, Prasun
    2020 20TH IEEE INTERNATIONAL CONFERENCE ON ENVIRONMENT AND ELECTRICAL ENGINEERING AND 2020 4TH IEEE INDUSTRIAL AND COMMERCIAL POWER SYSTEMS EUROPE (EEEIC/I&CPS EUROPE), 2020,
  • [46] Detection of Epileptic Seizure Using Pretrained Deep Convolutional Neural Network and Transfer Learning
    Nogay, Hidir Selcuk
    Adeli, Hojjat
    EUROPEAN NEUROLOGY, 2021, 83 (06) : 602 - 614
  • [47] Deep learning methods in network intrusion detection: A survey and an objective comparison
    Gamage, Sunanda
    Samarabandu, Jagath
    JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, 2020, 169 (169)
  • [48] Multiple Kernel Transfer Learning for Enhancing Network Intrusion Detection in Encrypted and Heterogeneous Network Environments
    Amamra, Abdelfattah
    Terrelonge, Vincent
    ELECTRONICS, 2025, 14 (01):
  • [49] ADFCNN-BiLSTM: A Deep Neural Network Based on Attention and Deformable Convolution for Network Intrusion Detection
    Li, Bin
    Li, Jie
    Jia, Mingyu
    SENSORS, 2025, 25 (05)
  • [50] Deep Neural Network Based Real-Time Intrusion Detection System
    Sharuka Promodya Thirimanne
    Lasitha Jayawardana
    Lasith Yasakethu
    Pushpika Liyanaarachchi
    Chaminda Hewage
    SN Computer Science, 2022, 3 (2)