TL-NID: Deep Neural Network with Transfer Learning for Network Intrusion Detection

被引:23
|
作者
Masum, Mohammad [1 ]
Shahriar, Hossain [2 ]
机构
[1] Kennesaw State Univ, Analyt & Data Sci Inst, Kennesaw, GA 30144 USA
[2] Kennesaw State Univ, Dept Informat Technol, Marietta, GA USA
来源
INTERNATIONAL CONFERENCE FOR INTERNET TECHNOLOGY AND SECURED TRANSACTIONS (ICITST-2020) | 2020年
关键词
Transfer learning; Pre-trained model; VGG-16; Deep neural network; Network intrusion detection;
D O I
10.23919/ICITST51030.2020.9351317
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Network intrusion detection systems (NIDSs) play an essential role in the defense of computer networks by identifying a computer networks' unauthorized access and investigating potential security breaches. Traditional NIDSs encounters difficulties to combat newly created sophisticated and unpredictable security attacks. Hence, there is an increasing need for automatic intrusion detection solution that can detect malicious activities more accurately and prevent high false alarm rates (FPR). In this paper, we propose a novel network intrusion detection framework using a deep neural network based on the pretrained VGG-16 architecture. The framework, TL-NID (Transfer Learning for Network Intrusion Detection), is a two-step process where features are extracted in the first step, using VGG-16 pre-trained on ImageNet dataset and in the 2nd step a deep neural network is applied to the extracted features for classification. We applied TL-NID on NSL-KDD, a benchmark dataset for network intrusion, to evaluate the performance of the proposed framework. The experimental results show that our proposed method can effectively learn from the NSL-KDD dataset with producing a realistic performance in terms of accuracy, precision, recall, and false alarm. This study also aims to motivate security researchers to exploit different state-of-the-art pre-trained models for network intrusion detection problems through valuable knowledge transfer.
引用
收藏
页码:64 / 70
页数:7
相关论文
共 50 条
  • [11] Transfer Learning of Deep Neural Network for Speech Emotion Recognition
    Huang, Ying
    Hu, Mingqing
    Yu, Xianguo
    Wang, Tao
    Yang, Chen
    PATTERN RECOGNITION (CCPR 2016), PT II, 2016, 663 : 721 - 729
  • [12] Network Security Enhanced with Deep Neural Network-Based Intrusion Detection System
    Alrayes, Fatma S.
    Zakariah, Mohammed
    Amin, Syed Umar
    Khan, Zafar Iqbal
    Alqurni, Jehad Saad
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 80 (01): : 1457 - 1490
  • [13] Network Anomaly Intrusion Detection Based on Deep Learning Approach
    Wang, Yung-Chung
    Houng, Yi-Chun
    Chen, Han-Xuan
    Tseng, Shu-Ming
    SENSORS, 2023, 23 (04)
  • [14] Network intrusion detection using feature fusion with deep learning
    Abiodun Ayantayo
    Amrit Kaur
    Anit Kour
    Xavier Schmoor
    Fayyaz Shah
    Ian Vickers
    Paul Kearney
    Mohammed M. Abdelsamea
    Journal of Big Data, 10
  • [15] Network intrusion detection using feature fusion with deep learning
    Ayantayo, Abiodun
    Kaur, Amrit
    Kour, Anit
    Schmoor, Xavier
    Shah, Fayyaz
    Vickers, Ian
    Kearney, Paul
    Abdelsamea, Mohammed M.
    JOURNAL OF BIG DATA, 2023, 10 (01)
  • [16] A network intrusion detection system based on deep learning in the IoT
    Wang, Xiao
    Dai, Lie
    Yang, Guang
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (16) : 24520 - 24558
  • [17] Transfer learning-based deep ensemble neural network for plant leaf disease detection
    Vallabhajosyula, Sasikala
    Sistla, Venkatramaphanikumar
    Kolli, Venkata Krishna Kishore
    JOURNAL OF PLANT DISEASES AND PROTECTION, 2022, 129 (03) : 545 - 558
  • [18] Structural Damage Detection using Deep Convolutional Neural Network and Transfer Learning
    Feng, Chuncheng
    Zhang, Hua
    Wang, Shuang
    Li, Yonglong
    Wang, Haoran
    Yan, Fei
    KSCE JOURNAL OF CIVIL ENGINEERING, 2019, 23 (10) : 4493 - 4502
  • [19] Attention-based Deep Learning for Network Intrusion Detection
    Guo, Naiwang
    Tian, Yingjie
    Li, Fan
    Yang, Hongshan
    2020 INTERNATIONAL CONFERENCE ON IMAGE, VIDEO PROCESSING AND ARTIFICIAL INTELLIGENCE, 2020, 11584
  • [20] Adaptive deep learning for network intrusion detection by risk analysis
    Zhang, Lijun
    Lu, Xingyu
    Chen, Zhaoqiang
    Liu, Tianwei
    Chen, Qun
    Li, Zhanhuai
    NEUROCOMPUTING, 2022, 493 : 46 - 58