Construction of High-Resolution Bathymetric Dataset for the Mariana Trench

被引:10
|
作者
Liu, Yang [1 ,2 ,3 ]
Wu, Ziyin [1 ,2 ,3 ]
Zhao, Dineng [2 ,3 ]
Zhou, Jieqiong [2 ,3 ]
Shang, Jihong [2 ,3 ]
Wang, Mingwei [2 ,3 ]
Zhu, Chao [2 ,3 ]
Luo, Xiaowen [2 ,3 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Oceanog, Shanghai 200030, Peoples R China
[2] State Ocean Adm, Key Lab Submarine Geosci, Hangzhou 310012, Zhejiang, Peoples R China
[3] Minist Nat Resources, Inst Oceanog 2, Hangzhou 310012, Zhejiang, Peoples R China
来源
IEEE ACCESS | 2019年 / 7卷
基金
中国国家自然科学基金;
关键词
Oceans; Interpolation; Data integration; Navigation; Manganese; Splines (mathematics); Mathematical model; Merge-normalization; multisource bathymetric data; DBM; SRTM; GEBCO; Mariana Trench; CONTINUOUS CURVATURE SPLINES; CALIBRATION; FUSION; MODEL;
D O I
10.1109/ACCESS.2019.2944667
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Access to reliable and accurate bathymetric data is fundamental to many marine activities. This paper proposes a merge-normalization (MN) method that is suitable for multisource bathymetric data fusion in deep ocean areas, to solve the problem of difficult to integrate high-precision digital bathymetric model (DBM) for complex sources and various resolutions of global deep ocean bathymetric data. Then we apply it to the DBM construction of the Mariana Trench. The method combines multibeam, single-beam, and electronic navigational chart data with Shuttle Radar Topography Mission (SRTM) dataset by using the workflow of merging and normalizing, which can fill the data gaps while preserving topographic details in high-resolution bathymetric data. Compared with the widely used General Bathymetric Chart of the Oceans (GEBCO) dataset, the Mariana Trench dataset constructed in this study demonstrated improved accuracy, resolution, and topographic detail, highlighting the value of the application of the method and of its development potential.
引用
收藏
页码:142441 / 142450
页数:10
相关论文
共 50 条
  • [31] CONTINENTAL-SCALE RIVER FLOW MODELING OF THE MISSISSIPPI RIVER BASIN USING HIGH-RESOLUTION NHDPLUS DATASET
    Tavakoly, Ahmad A.
    Snow, Alan D.
    David, Cedric H.
    Follum, Michael L.
    Maidment, David R.
    Yang, Zong-Liang
    JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, 2017, 53 (02): : 258 - 279
  • [32] Assessment of extreme local topographic winds and their future changes from a massive high-resolution ensemble climate dataset
    Kitano, Yoshikazu
    Ohba, Masamichi
    Soda, Naohiro
    Hattori, Yasuo
    Hoshino, Tsuyoshi
    Yamada, Tomohito J.
    HYDROLOGICAL RESEARCH LETTERS, 2023, 17 (04): : 69 - 76
  • [33] A new two-decade (2001-2019) high-resolution agricultural primary productivity dataset for India
    Gangopadhyay, Prasun K.
    Shirsath, Paresh B.
    Dadhwal, Vinay K.
    Aggarwal, Pramod K.
    SCIENTIFIC DATA, 2022, 9 (01)
  • [34] High-resolution Annual Dynamic dataset of Curve Number from 2008 to 2021 over Conterminous United States
    Wu, Qiong
    Yang, Jia
    Ji, Cunxiong
    Fang, Shanmin
    SCIENTIFIC DATA, 2024, 11 (01)
  • [35] Towards Robust Pansharpening: A Large-Scale High-Resolution Multi-Scene Dataset and Novel Approach
    Wang, Shiying
    Zou, Xuechao
    Li, Kai
    Xing, Junliang
    Cao, Tengfei
    Tao, Pin
    REMOTE SENSING, 2024, 16 (16)
  • [36] Global Daily High-Resolution Satellite-Based Foundation Sea Surface Temperature Dataset: Development and Validation against Two Definitions of Foundation SST
    Hosoda, Kohtaro
    Sakaida, Futoki
    REMOTE SENSING, 2016, 8 (11):
  • [37] High-resolution dating of Paleozoic fossils
    Wagner, Peter
    SCIENCE, 2020, 367 (6475) : 249 - 249
  • [38] Rainfall: high-resolution observation and prediction
    Charlton-Perez, C.
    Cloke, H. L.
    Ghelli, A.
    METEOROLOGICAL APPLICATIONS, 2015, 22 (01) : 1 - 2
  • [39] Sampling for High-Resolution Soil Mapping
    de Gruijter, J. J.
    McBratney, A. B.
    Taylor, J.
    PROXIMAL SOIL SENSING, 2010, : 3 - +
  • [40] High-Resolution Anamorphic SPECT Imaging
    Durko, Heather L.
    Barrett, Harrison H.
    Furenlid, Lars R.
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2014, 61 (03) : 1126 - 1135