Construction of High-Resolution Bathymetric Dataset for the Mariana Trench

被引:10
|
作者
Liu, Yang [1 ,2 ,3 ]
Wu, Ziyin [1 ,2 ,3 ]
Zhao, Dineng [2 ,3 ]
Zhou, Jieqiong [2 ,3 ]
Shang, Jihong [2 ,3 ]
Wang, Mingwei [2 ,3 ]
Zhu, Chao [2 ,3 ]
Luo, Xiaowen [2 ,3 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Oceanog, Shanghai 200030, Peoples R China
[2] State Ocean Adm, Key Lab Submarine Geosci, Hangzhou 310012, Zhejiang, Peoples R China
[3] Minist Nat Resources, Inst Oceanog 2, Hangzhou 310012, Zhejiang, Peoples R China
来源
IEEE ACCESS | 2019年 / 7卷
基金
中国国家自然科学基金;
关键词
Oceans; Interpolation; Data integration; Navigation; Manganese; Splines (mathematics); Mathematical model; Merge-normalization; multisource bathymetric data; DBM; SRTM; GEBCO; Mariana Trench; CONTINUOUS CURVATURE SPLINES; CALIBRATION; FUSION; MODEL;
D O I
10.1109/ACCESS.2019.2944667
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Access to reliable and accurate bathymetric data is fundamental to many marine activities. This paper proposes a merge-normalization (MN) method that is suitable for multisource bathymetric data fusion in deep ocean areas, to solve the problem of difficult to integrate high-precision digital bathymetric model (DBM) for complex sources and various resolutions of global deep ocean bathymetric data. Then we apply it to the DBM construction of the Mariana Trench. The method combines multibeam, single-beam, and electronic navigational chart data with Shuttle Radar Topography Mission (SRTM) dataset by using the workflow of merging and normalizing, which can fill the data gaps while preserving topographic details in high-resolution bathymetric data. Compared with the widely used General Bathymetric Chart of the Oceans (GEBCO) dataset, the Mariana Trench dataset constructed in this study demonstrated improved accuracy, resolution, and topographic detail, highlighting the value of the application of the method and of its development potential.
引用
收藏
页码:142441 / 142450
页数:10
相关论文
共 50 条
  • [21] New Zealand Active Faults Database: the high-resolution dataset v2.0
    Morgenstern, Regine
    Litchfield, Nicola J.
    Langridge, Robert M.
    Heron, David W.
    Townsend, Dougal B.
    Villamor, Pilar
    Barrell, David J. A.
    Ries, William F.
    Van Dissen, Russ J.
    Clark, Kate J.
    Coffey, Genevieve L.
    Zoeller, Alec
    Howell, Andrew
    Easterbrook-Clarke, Luke H.
    NEW ZEALAND JOURNAL OF GEOLOGY AND GEOPHYSICS, 2024,
  • [22] The first high-resolution meteorological forcing dataset for land process studies over China
    He, Jie
    Yang, Kun
    Tang, Wenjun
    Lu, Hui
    Qin, Jun
    Chen, Yingying
    Li, Xin
    SCIENTIFIC DATA, 2020, 7 (01)
  • [23] SIAT-3DFE: A High-Resolution 3D Facial Expression Dataset
    Ye, Yuping
    Song, Zhan
    Guo, Junguang
    Qiao, Yu
    IEEE ACCESS, 2020, 8 (08) : 48205 - 48211
  • [24] A high-resolution three-year dataset supporting rooftop photovoltaics (PV) generation analytics
    Lin, Zinan
    Zhou, Qi
    Wang, Zhe
    Wang, Ce
    Bookhart, Davis Boyd
    Leung-Shea, Marcus
    SCIENTIFIC DATA, 2025, 12 (01)
  • [25] DaliWS: A High-Resolution Dataset with Precise Annotations for Water Segmentation in Synthetic Aperture Radar Images
    Zhang, Shanshan
    Li, Weibin
    Wang, Rongfang
    Liang, Chenbin
    Feng, Xihui
    Hu, Yanhua
    REMOTE SENSING, 2024, 16 (04)
  • [26] HIGH-RESOLUTION SOIL MOISTURE MAPPING IN AFGHANISTAN
    Hendrickx, Jan M. H.
    Harrison, J. Bruce J.
    Borchers, Brian
    Kelley, Julie R.
    Howington, Stacy
    Ballard, Jerry
    DETECTION AND SENSING OF MINES, EXPLOSIVE OBJECTS, AND OBSCURED TARGETS XVI, 2011, 8017
  • [27] SPREAD: a high-resolution daily gridded precipitation dataset for Spain - an extreme events frequency and intensity overview
    Serrano-Notivoli, Roberto
    Begueria, Santiago
    Angel Saz, Miguel
    Alberto Longares, Luis
    de Luis, Martin
    EARTH SYSTEM SCIENCE DATA, 2017, 9 (02) : 721 - 738
  • [28] High-resolution gridded dataset of China's offshore wind potential and costs under technical change
    An, Kangxin
    Cai, Wenjia
    Lu, Xi
    Wang, Can
    SCIENTIFIC DATA, 2025, 12 (01)
  • [29] High-resolution crop yield and water productivity dataset generated using random forest and remote sensing
    Cheng, Minghan
    Jiao, Xiyun
    Shi, Lei
    Penuelas, Josep
    Kumar, Lalit
    Nie, Chenwei
    Wu, Tianao
    Liu, Kaihua
    Wu, Wenbin
    Jin, Xiuliang
    SCIENTIFIC DATA, 2022, 9 (01)
  • [30] A high-resolution index for vegetation extraction in IKONOS images
    El-Mezouar, M. Chikr
    Taleb, N.
    Kpalma, K.
    Ronsin, J.
    REMOTE SENSING FOR AGRICULTURE, ECOSYSTEMS, AND HYDROLOGY XII, 2010, 7824