Construction of High-Resolution Bathymetric Dataset for the Mariana Trench

被引:10
|
作者
Liu, Yang [1 ,2 ,3 ]
Wu, Ziyin [1 ,2 ,3 ]
Zhao, Dineng [2 ,3 ]
Zhou, Jieqiong [2 ,3 ]
Shang, Jihong [2 ,3 ]
Wang, Mingwei [2 ,3 ]
Zhu, Chao [2 ,3 ]
Luo, Xiaowen [2 ,3 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Oceanog, Shanghai 200030, Peoples R China
[2] State Ocean Adm, Key Lab Submarine Geosci, Hangzhou 310012, Zhejiang, Peoples R China
[3] Minist Nat Resources, Inst Oceanog 2, Hangzhou 310012, Zhejiang, Peoples R China
来源
IEEE ACCESS | 2019年 / 7卷
基金
中国国家自然科学基金;
关键词
Oceans; Interpolation; Data integration; Navigation; Manganese; Splines (mathematics); Mathematical model; Merge-normalization; multisource bathymetric data; DBM; SRTM; GEBCO; Mariana Trench; CONTINUOUS CURVATURE SPLINES; CALIBRATION; FUSION; MODEL;
D O I
10.1109/ACCESS.2019.2944667
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Access to reliable and accurate bathymetric data is fundamental to many marine activities. This paper proposes a merge-normalization (MN) method that is suitable for multisource bathymetric data fusion in deep ocean areas, to solve the problem of difficult to integrate high-precision digital bathymetric model (DBM) for complex sources and various resolutions of global deep ocean bathymetric data. Then we apply it to the DBM construction of the Mariana Trench. The method combines multibeam, single-beam, and electronic navigational chart data with Shuttle Radar Topography Mission (SRTM) dataset by using the workflow of merging and normalizing, which can fill the data gaps while preserving topographic details in high-resolution bathymetric data. Compared with the widely used General Bathymetric Chart of the Oceans (GEBCO) dataset, the Mariana Trench dataset constructed in this study demonstrated improved accuracy, resolution, and topographic detail, highlighting the value of the application of the method and of its development potential.
引用
收藏
页码:142441 / 142450
页数:10
相关论文
共 50 条
  • [1] Advanced mapping robot and high-resolution dataset
    Chen, Hongyu
    Yang, Zhijie
    Zhao, Xiting
    Weng, Guangyuan
    Wan, Haochuan
    Luo, Jianwen
    Ye, Xiaoya
    Zhao, Zehao
    He, Zhenpeng
    Shen, Yongxia
    Schwertfeger, Soren
    ROBOTICS AND AUTONOMOUS SYSTEMS, 2020, 131 (131)
  • [2] A precise bathymetric map of the world’s deepest seafloor, Challenger Deep in the Mariana Trench
    Masao Nakanishi
    Jun Hashimoto
    Marine Geophysical Research, 2011, 32 : 455 - 463
  • [3] A precise bathymetric map of the world's deepest seafloor, Challenger Deep in the Mariana Trench
    Nakanishi, Masao
    Hashimoto, Jun
    MARINE GEOPHYSICAL RESEARCH, 2011, 32 (04) : 455 - 463
  • [4] High-Resolution Digital Bathymetric Model (DBM) With Uncertainty Reconstructed by Deep Learning With Dropout
    Liu, Yang
    Li, Sanzhong
    Yan, Weichao
    Suo, Yanhui
    Wang, Liangliang
    Zou, Zhuoyan
    Wu, Lixin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 17
  • [5] A high-resolution projected climate dataset for Vietnam: Construction and preliminary application in assessing future change
    Quan Tran-Anh
    Thanh Ngo-Duc
    Espagne, Etienne
    Long Trinh-Tuan
    JOURNAL OF WATER AND CLIMATE CHANGE, 2022, 13 (09) : 3379 - 3399
  • [6] A high-resolution dataset of water fluxes and states for Germany accounting for parametric uncertainty
    Zink, Matthias
    Kumar, Rohini
    Cuntz, Matthias
    Samaniego, Luis
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2017, 21 (03) : 1769 - 1790
  • [7] MERIDA HRES: A new high-resolution reanalysis dataset for Italy
    Viterbo, Francesca
    Sperati, Simone
    Vitali, Bruno
    D'Amico, Filippo
    Cavalleri, Francesco
    Bonanno, Riccardo
    Lacavalla, Matteo
    METEOROLOGICAL APPLICATIONS, 2024, 31 (06)
  • [8] A new high-resolution Meteorological Reanalysis Italian Dataset: MERIDA
    Bonanno, Riccardo
    Lacavalla, Matteo
    Sperati, Simone
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2019, 145 (721) : 1756 - 1779
  • [9] A twenty-year dataset of high-resolution maize distribution in China
    Peng, Qiongyan
    Shen, Ruoque
    Li, Xiangqian
    Ye, Tao
    Dong, Jie
    Fu, Yangyang
    Yuan, Wenping
    SCIENTIFIC DATA, 2023, 10 (01)
  • [10] Performance of an empirical bias-correction of a high-resolution climate dataset
    Bennett, James C.
    Grose, Michael R.
    Corney, Stuart P.
    White, Christopher J.
    Holz, Gregory K.
    Katzfey, Jack J.
    Post, David A.
    Bindoff, Nathaniel L.
    INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2014, 34 (07) : 2189 - 2204