Aging effects in interface-engineered perovskite solar cells with 2D nanomaterials: A depth profile analysis

被引:53
|
作者
Busby, Yan [1 ]
Agresti, Antonio [2 ]
Pescetelli, Sara [2 ]
Di Carlo, Aldo [2 ,3 ]
Noel, Celine [1 ]
Pireaux, Jean-Jacques [1 ]
Houssiau, Laurent [1 ]
机构
[1] Univ Namur, Namur Inst Struct Matter, Lab Interdisciplinaire Spect Elect, 61 Rue Bruxelles, B-5000 Namur, Belgium
[2] Univ Roma Tor Vergata, CHOSE, Dept Elect Engn, Via Politecn 1, I-00133 Rome, Italy
[3] Natl Univ Sci & Technol MISiS, LASE, Leninskiy Prosect 6, Moscow 119049, Russia
关键词
Perovskite solar cells; Interface engineering; XPS; ToF-SIMS; Depth profiling; Interface analysis; Aging effects; CONVERSION EFFICIENCY; INDUCED DEGRADATION; PERFORMANCE; STABILITY; DEPOSITION; MOISTURE; CATIONS; OXIDE; LEAD;
D O I
10.1016/j.mtener.2018.04.005
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The stability of perovskite solar cells (PSCs) is a major factor limiting the market breakthrough of this technology. To understand the aging effects in PSCs is mandatory to rationally design implemented architectures and materials combining a viable deposition process, efficiency and stability. Despite of this evidence, only few experimental works succeeded in the direct quantitative characterization of aging effects in PSCs. In this work, we apply state-of-the-art X-ray photoelectron spectroscopy (XPS) depth profile analysis and time-of-flight secondary ion mass spectrometry (ToF-SIMS) 3D imaging to investigate the light-induced degradation of layers and interfaces in reference (Au/Spiro-OMeTAD/CH3NH3PbI3/m-TiO2/cTiO(2)/FTO) and interface-engineered mesoscopic PSCs in which graphene flakes are added into the mesoscopic TiO2 layer and a solution-processed 2H-MoS2 flakes buffer layer is added at the SpiroOMeTAD/CH3NH3PbI3 interface. Results show that the graphene addition into the mesoscopic TiO2 layer improves the stability of the PSC by reducing the locally-inhomogeneous light-induced back-conversion of the CH3NH3PbI3 layer into PbIx and PbOx species and the consequent release of iodine species, which diffuse across the interfaces and causes the modifications at the gold electrode (Au-I bonding) and the mesoscopic TiO2 (Ti-I bonding) interfaces. Moreover, where the CH3NH3PbI3 layer is preserved the gold diffusion across the entire device structure is strongly reduced even after the aging. The 2H-MoS2 flakes buffer layer allows limiting the localized diffusion of gold and the iodine diffusion in as-prepared PSCs while it is rather ineffective in preventing light-induced aging effects. Overall, thanks to the lower average degradation of the layers and interfaces, interface engineered PSCs could retain similar to 60% of their initial PCE after the aging respect to less than similar to 25% in the reference cells. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 50 条
  • [1] Orientationally engineered 2D/3D perovskite for high efficiency solar cells
    Abbas, Muhammad Sohail
    Hussain, Sabir
    Zhang, Jinaqi
    Wang, Boxin
    Yang, Chen
    Wang, Zhen
    Wei, Zhixiang
    Ahmad, Rashid
    SUSTAINABLE ENERGY & FUELS, 2020, 4 (01): : 324 - 330
  • [2] Toward Efficient and Stable Perovskite Solar Cells by 2D Interface Energy Band Alignment
    Wang, Weiwei
    Su, Zhenhuang
    Sun, Bo
    Tao, Lei
    Gu, Hao
    Hui, Wei
    Wei, Qi
    Shi, Wei
    Gao, Xingyu
    Xia, Yingdong
    Chen, Yonghua
    ADVANCED MATERIALS INTERFACES, 2021, 8 (01)
  • [3] Interface tweaking of perovskite solar cells with carbon nitride-based 2D materials
    Hemasiri, Naveen Harindu
    Ashraf, Muhammad
    Kazim, Samrana
    Graf, Robert
    Ullah, Nisar
    Tahir, Muhammad Nawaz
    Ahmad, Shahzada
    NANO ENERGY, 2023, 109
  • [4] Dual-Interface Engineering in Perovskite Solar Cells with 2D Carbides
    He, Jiandong
    Hu, Guilin
    Jiang, Yuanyuan
    Zeng, Siyuan
    Niu, Guosheng
    Feng, Guitao
    Liu, Zhe
    Yang, Kaiyi
    Shao, Cong
    Zhao, Yao
    Wang, Fuyi
    Li, Yongjun
    Wang, Jizheng
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (41)
  • [5] Energy Band Regulation in 2D Perovskite Solar Cells
    Zhou, Yi
    Hu, Jingjing
    Meng, Fanning
    Liu, Caiyun
    Gao, Liguo
    Ma, Tingli
    PROGRESS IN CHEMISTRY, 2020, 32 (07) : 966 - 977
  • [6] In Situ 2D Perovskite Formation and the Impact of the 2D/3D Structures on Performance and Stability of Perovskite Solar Cells
    de Holanda, Matheus S.
    Szostak, Rodrigo
    Marchezi, Paulo E.
    Duarte, Luis G. T. A.
    Germino, Jose C.
    Atvars, Teresa D. Z.
    Nogueira, Ana F.
    SOLAR RRL, 2019, 3 (09):
  • [7] Tuning 2D Perovskite Passivation: Impact of Electronic and Steric Effects on the Performance of 3D/2D Perovskite Solar Cells
    Karabag, Zeynep Gozukara
    Karabag, Aliekber
    Gunes, Ummugulsum
    Gao, Xiao-Xin
    Syzgenteva, Olga A.
    Syzgenteva, Maria A.
    Varlioglu Yaylali, Figen
    Shibayama, Naoyuki
    Kanda, Hiroyuki
    Rafieh, Alwani Imanah
    Turnell-Ritson, Roland C.
    Dyson, Paul J.
    Yerci, Selcuk
    Nazeeruddin, Mohammad Khaja
    Gunbas, Gorkem
    ADVANCED ENERGY MATERIALS, 2023, 13 (45)
  • [8] Enhanced efficiency and stability of perovskite solar cells by 2D perovskite vapor-assisted interface optimization
    Chen, Minghui
    Li, Pengwei
    Liang, Chao
    Gu, Hao
    Tong, Weishuang
    Cheng, Shiping
    Li, Weili
    Zhao, Ganqing
    Shao, Guosheng
    JOURNAL OF ENERGY CHEMISTRY, 2020, 45 : 103 - 109
  • [9] In Situ Growth of 2D Perovskite Capping Layer for Stable and Efficient Perovskite Solar Cells
    Chen, Peng
    Bai, Yang
    Wang, Songcan
    Lyu, Miaoqiang
    Yun, Jung-Ho
    Wang, Lianzhou
    ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (17)
  • [10] One-Year stable perovskite solar cells by 2D/3D interface engineering
    Grancini, G.
    Roldan-Carmona, C.
    Zimmermann, I.
    Mosconi, E.
    Lee, X.
    Martineau, D.
    Narbey, S.
    Oswald, F.
    De Angelis, F.
    Graetzel, M.
    Nazeeruddin, Mohammad Khaja
    NATURE COMMUNICATIONS, 2017, 8