Strong anisotropy and magnetostriction in the two-dimensional Stoner ferromagnet Fe3GeTe2

被引:303
作者
Zhuang, Houlong L. [1 ,2 ]
Kent, P. R. C. [2 ,3 ]
Hennig, Richard G. [4 ]
机构
[1] Princeton Univ, Dept Mech & Aerosp Engn, Princeton, NJ 08544 USA
[2] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Bethel Valley Rd, Oak Ridge, TN 37831 USA
[3] Oak Ridge Natl Lab, Div Math & Comp Sci, Bethel Valley Rd, Oak Ridge, TN 37831 USA
[4] Univ Florida, Dept Mat Sci & Engn, Gainesville, FL 32611 USA
基金
美国国家科学基金会;
关键词
ENERGY; TRANSITION; MAGNETISM; NBS2;
D O I
10.1103/PhysRevB.93.134407
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Computationally characterizing magnetic properies of novel two-dimensional (2D) materials serves as an important first step of exploring possible applications. Using density-functional theory, we show that single-layer Fe3GeTe2 is a potential 2D material with sufficiently low formation energy to be synthesized by mechanical exfoliation from the bulk phase with a van der Waals layered structure. In addition, we calculated the phonon dispersion demonstrating that single-layer Fe3GeTe2 is dynamically stable. Furthermore, we find that similar to the bulk phase, 2D Fe3GeTe2 exhibits amagnetic moment that originates from a Stoner instability. In contrast to other 2D materials, we find that single-layer Fe3GeTe2 exhibits a significant uniaxial magnetocrystalline anisotropy energy of 920 mu eV per Fe atom originating from spin-orbit coupling. Finally, we show that applying biaxial tensile strains enhances the anisotropy energy, which reveals strong magnetostriction in single-layer Fe3GeTe2 with a sizable magneostrictive coefficient. Our results indicate that single-layer Fe3GeTe2 is potentially useful for magnetic storage applications.
引用
收藏
页数:7
相关论文
共 58 条
[1]   van der Waals Bonding in Layered Compounds from Advanced Density-Functional First-Principles Calculations [J].
Bjorkman, T. ;
Gulans, A. ;
Krasheninnikov, A. V. ;
Nieminen, R. M. .
PHYSICAL REVIEW LETTERS, 2012, 108 (23)
[2]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[3]  
Blundell S., 2001, MAGNETISM CONDENSED
[4]   Effect of substrate strain on calculated magnetic properties and magnetic anisotropy energy of CoO [J].
Boussendel, A. ;
Baadji, N. ;
Haroun, A. ;
Dreysse, H. ;
Alouani, M. .
PHYSICAL REVIEW B, 2010, 81 (18)
[5]   Giant magnetic anisotropy in tetragonal FeCo alloys -: art. no. 027203 [J].
Burkert, T ;
Nordström, L ;
Eriksson, O ;
Heinonen, O .
PHYSICAL REVIEW LETTERS, 2004, 93 (02) :027203-1
[6]   Magnetic Properties of Layered Itinerant Electron Ferromagnet Fe3GeTe2 [J].
Chen, Bin ;
Yang, JinHu ;
Wang, HangDong ;
Imai, Masaki ;
Ohta, Hiroto ;
Michioka, Chishiro ;
Yoshimura, Kazuyoshi ;
Fang, MingHu .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2013, 82 (12)
[7]  
Clark A.E., 2000, HDB MAGNETOSTRICITVE, P1, DOI [DOI 10.1016/B978-012238640-4/50017-6, 10.1016/b978-012238640-4/50017-6]
[8]   Large magnetic anisotropy of Fe2P investigated via ab initio density functional theory calculations [J].
Costa, M. ;
Granas, O. ;
Bergman, A. ;
Venezuela, P. ;
Nordblad, P. ;
Klintenberg, M. ;
Eriksson, O. .
PHYSICAL REVIEW B, 2012, 86 (08)
[9]   PAIR MODEL OF MAGNETOSTRICTION FOR HEXAGONAL CLOSE-PACKED CRYSTALS [J].
CULLEN, JR .
PHYSICAL REVIEW B, 1995, 52 (01) :57-60
[10]   1ST-PRINCIPLES CALCULATION OF THE MAGNETOCRYSTALLINE ANISOTROPY ENERGY OF IRON, COBALT, AND NICKEL [J].
DAALDEROP, GHO ;
KELLY, PJ ;
SCHUURMANS, MFH .
PHYSICAL REVIEW B, 1990, 41 (17) :11919-11937