The maximal (signless Laplacian) spectral radius of connected graphs with given matching number

被引:0
作者
Chen, Xiaodan [1 ,2 ]
Lu, Fuliang [3 ]
机构
[1] Guangxi Univ, Coll Math & Informat Sci, Nanning 530004, Guangxi, Peoples R China
[2] Hunan Normal Univ, Dept Math, Changsha 410081, Hunan, Peoples R China
[3] Linyi Univ, Sch Sci, Linyi 276000, Shandong, Peoples R China
基金
中国博士后科学基金;
关键词
connected graph; spectral radius; signless Laplacian; matching number; DIAMETER;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the graphs with maximal (signless Laplacian) spectral radius among all connected graphs with given matching number are characterized.
引用
收藏
页码:237 / 247
页数:11
相关论文
共 15 条
[1]  
[Anonymous], RES REPORT
[2]   On the spectral radius of graphs with cut vertices [J].
Berman, A ;
Zhang, XD .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2001, 83 (02) :233-240
[3]  
Biyikoglu T, 2008, ELECTRON J COMB, V15
[4]   ON THE SPECTRAL-RADIUS OF COMPLEMENTARY ACYCLIC MATRICES OF ZEROS AND ONES [J].
BRUALDI, RA ;
SOLHEID, ES .
SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1986, 7 (02) :265-272
[5]   Graphs with maximal signless Laplacian spectral radius [J].
Chang, Ting-Jung ;
Tam, Bit-Shun .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (07) :1708-1733
[6]  
Cvetkovic D., 1990, Linear Multilinear Algebra, V28, P3, DOI DOI 10.1080/03081089008818026
[7]   Spectral radius of graphs with given matching number [J].
Feng, Lihua ;
Yu, Guihai ;
Zhang, Xiao-Dong .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 422 (01) :133-138
[8]   Bounds on the largest eigenvalues of trees with a given size of matching [J].
Hou, YP ;
Li, JS .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2002, 342 (1-3) :203-217
[9]   On the spectral radius of graphs with cut edges [J].
Liu, HQ ;
Lu, M ;
Tian, F .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 389 :139-145
[10]   On the spectral radius of graphs with a given domination number [J].
Stevanovic, Dragan ;
Aouchiche, Mustapha ;
Hansen, Pierre .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (8-9) :1854-1864