POSITIVE SOLUTIONS OF THE COMPLEMENTARY LIDSTONE BOUNDARY VALUE PROBLEM

被引:2
作者
Graef, John R. [1 ]
Yang, Bo [2 ]
机构
[1] Univ Tennessee, Dept Math, Chattanooga, TN 37403 USA
[2] Kennessaw State Univ, Dept Math, Kennessaw, GA USA
关键词
complementary Lidstone boundary value problem; positive solutions; upper and lower estimates;
D O I
10.1216/rmj.2021.51.139
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The authors consider the higher order complementary Lidstone boundary value problem. Some upper and lower bounds for positive solutions of the problem are obtained. Sufficient conditions for the existence and nonexistence of positive solutions are established.
引用
收藏
页码:139 / 147
页数:9
相关论文
共 8 条
[1]  
Agarwal R. P., 2010, POSITIVE SOLUTIONS S
[2]  
Agarwal RP, 2012, ELECTRON J QUAL THEO, P1
[3]   Complementary Lidstone Interpolation and Boundary Value Problems [J].
Agarwal, Ravi P. ;
Pinelas, Sandra ;
Wong, Patricia J. Y. .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2009,
[4]   Singular (p, n-p) focal and (n, p) higher order boundary value problems [J].
Agarwal, RP ;
O'Regan, D ;
Lakshmikantham, V .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 42 (02) :215-228
[5]   Positive Solutions for Singular Complementary Lidstone Boundary Value Problems [J].
Wang, Fanglei ;
An, Yukun .
ABSTRACT AND APPLIED ANALYSIS, 2011,
[6]   Triple solutions of complementary Lidstone boundary value problems via fixed point theorems [J].
Wong, Patricia J. Y. .
BOUNDARY VALUE PROBLEMS, 2014,
[7]   Upper and lower estimates for positive solutions of the higher order Lidstone boundary value problem [J].
Yang, Bo .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 382 (01) :290-302
[8]  
Yang B, 2009, ELECTRON J QUAL THEO