Ergodic and Diophantine properties of algorithms of Selmer type

被引:5
作者
Schweiger, F [1 ]
机构
[1] Salzburg Univ, Dept Math, A-5020 Salzburg, Austria
关键词
D O I
10.4064/aa114-2-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:99 / 111
页数:13
相关论文
共 9 条
[1]   Characteristic exponents of the Jacobi Perron algorithm and of the associated map [J].
Broise-Alamichel, A ;
Guivarc'h, Y .
ANNALES DE L INSTITUT FOURIER, 2001, 51 (03) :565-+
[2]   THE QUALITY OF THE DIOPHANTINE APPROXIMATIONS FOUND BY THE JACOBI-PERRON ALGORITHM AND RELATED ALGORITHMS [J].
LAGARIAS, JC .
MONATSHEFTE FUR MATHEMATIK, 1993, 115 (04) :299-328
[3]   INFINITE CLUSTERS AND CRITICAL-VALUES IN 2-DIMENSIONAL CIRCLE PERCOLATION [J].
MEESTER, RWJ ;
NOWICKI, T .
ISRAEL JOURNAL OF MATHEMATICS, 1989, 68 (01) :63-81
[4]   THE 3-DIMENSIONAL POINCARE CONTINUED-FRACTION ALGORITHM [J].
NOGUEIRA, A .
ISRAEL JOURNAL OF MATHEMATICS, 1995, 90 (1-3) :373-401
[5]  
Schweiger F, 2002, ANALYTIC AND PROBABILISTIC METHODS IN NUMBER THEORY, P242
[6]  
Schweiger F., 1995, Ergodic theory of fibred systems and metric number theory
[7]  
Schweiger F., 2001, SITZUNGSBER OST 2 MN, V210, P11
[8]  
Schweiger F., 2000, Multidimensional continued fractions
[9]  
SCHWEIGER F, 1981, ANALYSIS, V1, P171