Existence of four periodic solutions for a generalized delayed ratio-dependent predator-prey system

被引:1
作者
Wang, Qi [1 ]
Fang, Yayun [1 ]
Lu, Dicheng [1 ]
机构
[1] Anhui Univ, Sch Math Sci, Hefei 230601, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Positive periodic solutions; Predator-prey system; Coincidence degree theory; The continuation theorem; FUNCTIONAL-RESPONSE; HARVESTING TERMS; MODEL; MULTIPLICITY;
D O I
10.1016/j.amc.2014.09.043
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, by using the continuation theorem of coincidence degree theory, we obtain the existence condition of at least four periodic solutions for a delayed ratio-dependent predator-prey system. An example is represented to illustrate the feasibility of our main result. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:623 / 630
页数:8
相关论文
共 20 条
[1]   On a delayed nonautonomous ratio-dependent predator-prey model with Holling type functional response and diffusion [J].
Chen, Fengde ;
Shi, Jinlin .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 192 (02) :358-369
[2]   Multiple periodic solutions of delayed predator-prey systems with type IV functional responses [J].
Chen, YM .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2004, 5 (01) :45-53
[3]   Multiple periodic solutions for impulsive Gause-type ratio-dependent predator-prey systems with non-monotonic numerical responses [J].
Dai, Binxiang ;
Li, Ying ;
Luo, Zhenguo .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (18) :7478-7487
[4]   Periodic solution of a delayed ratio-dependent predator-prey model with monotonic functional response and impulse [J].
Dai, Binxiang ;
Su, Hua ;
Hu, Dianwang .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (01) :126-134
[5]   Multiple periodic solutions in generalized Gause-type predator-prey systems with non-monotonic numerical responses [J].
Ding, Xiaoquan ;
Jiang, Jifa .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (05) :2819-2827
[6]   Multiplicity of periodic solutions for a delayed ratio-dependent predator-prey model with Holling type III functional response and harvesting terms [J].
Fan, Yong-Hong ;
Wang, Lin-Lin .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 365 (02) :525-540
[7]   Existence of multiple periodic solutions for delay Lotka-Volterra competition patch systems with harvesting [J].
Fang, Hui ;
Xiao, Yongfeng .
APPLIED MATHEMATICAL MODELLING, 2009, 33 (02) :1086-1096
[8]   Four periodic solutions of a generalized delayed predator-prey system [J].
Feng, Jianwen ;
Chen, Shihua .
APPLIED MATHEMATICS AND COMPUTATION, 2006, 181 (02) :932-939
[9]  
Gaines R., 1977, LECT NOTES MATH
[10]  
Hu D. W., NONLINEAR ANAL RWA, V11, P1115