Targeting myeloid-derived suppressor cells with colony stimulating factor-1 receptor blockade can reverse immune resistance to immunotherapy in indoleamine 2,3-dioxygenase-expressing tumors

被引:120
作者
Holmgaard, Rikke B. [1 ]
Zamarin, Dmitriy [1 ,2 ,3 ,4 ]
Lesokhin, Alexander [1 ,2 ,3 ,4 ]
Merghoub, Taha [1 ]
Wolchok, Jedd D. [1 ,2 ,3 ,4 ]
机构
[1] Mem Sloan Kettering Canc Ctr, Swim Amer Ludwig Collaborat Lab, New York, NY 10065 USA
[2] Mem Sloan Kettering Canc Ctr, Dept Med, New York, NY 10065 USA
[3] Weill Cornell Med Coll, New York, NY 10065 USA
[4] Cornell Univ, Grad Sch Med Sci, New York, NY 10065 USA
关键词
Immunotherapy; IDO; MDSCs; CSF-1R; CTLA-4; PD-1; METASTATIC MELANOMA; PANCREATIC-CANCER; GM-CSF; INFILTRATING MACROPHAGES; KINASE INHIBITOR; PROGENITOR-CELL; BEARING MICE; T-CELLS; IPILIMUMAB; EFFICACY;
D O I
10.1016/j.ebiom.2016.02.024
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Tumor indoleamine 2,3-dioxygenase (IDO) promotes immunosuppression by direct action on effector T cells and Tregs and through recruitment, expansion and activation of myeloid-derived suppressor cells (MDSCs). Targeting of MDSCs is clinically being explored as a therapeutic strategy, though optimal targeting strategies and biomarkers predictive of response are presently unknown. Maturation and tumor recruitment of MDSCs are dependent on signaling through the receptor tyrosine kinase CSF-1R on myeloid cells. Here, we show that MDSCs are the critical cell population in IDO-expressing B16 tumors in mediating accelerated tumor outgrowth and resistance to immunotherapy. Using a clinically relevant drug, we show that inhibition of CSF-1R signaling can functionally block tumor-infiltrating MDSCs and enhance anti-tumor T cell responses. Furthermore, inhibition of CSF-1R sensitizes IDO-expressing tumors to immunotherapy with T cell checkpoint blockade, and combination of CSF-1R blockade with IDO inhibitors potently elicits tumor regression. These findings provide evidence for a critical and functional role for MDSCs on the in vivo outcome of IDO-expressing tumors. (C) 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:50 / 58
页数:9
相关论文
共 50 条
[1]   Colony-stimulating factor-1 blockade by antisense oligonucleotides and small interfering RNAs suppresses growth of human mammary tumor xenografts in mice [J].
Aharinejad, S ;
Paulus, P ;
Sioud, M ;
Hofmann, M ;
Zins, K ;
Schäfer, R ;
Stanley, ER ;
Abraham, D .
CANCER RESEARCH, 2004, 64 (15) :5378-5384
[2]   Colony stimulating factor-1 receptor signaling networks inhibit mouse macrophage inflammatory responses by induction of microRNA-21 [J].
Caescu, Cristina I. ;
Guo, Xingyi ;
Tesfa, Lydia ;
Bhagat, Tushar D. ;
Verma, Amit ;
Zheng, Deyou ;
Stanley, E. Richard .
BLOOD, 2015, 125 (08) :E1-E13
[3]   KIT oncogene inhibition drives intratumoral macrophage M2 polarization [J].
Cavnar, Michael J. ;
Zeng, Shan ;
Kim, Teresa S. ;
Sorenson, Eric C. ;
Ocuin, Lee M. ;
Balachandran, Vinod P. ;
Seifert, Adrian M. ;
Greer, Jonathan B. ;
Popow, Rachel ;
Crawley, Megan H. ;
Cohen, Noah A. ;
Green, Benjamin L. ;
Rossi, Ferdinand ;
Besmer, Peter ;
Antonescu, Cristina R. ;
DeMatteo, Ronald P. .
JOURNAL OF EXPERIMENTAL MEDICINE, 2013, 210 (13) :2873-2886
[4]   Microglial Stimulation of Glioblastoma Invasion Involves Epidermal Growth Factor Receptor (EGFR) and Colony Stimulating Factor 1 Receptor (CSF-1R) Signaling [J].
Coniglio, Salvatore J. ;
Eugenin, Eliseo ;
Dobrenis, Kostantin ;
Stanley, E. Richard ;
West, Brian L. ;
Symons, Marc H. ;
Segall, Jeffrey E. .
MOLECULAR MEDICINE, 2012, 18 (03) :519-527
[5]   Tumor Vaccines Expressing Flt3 Ligand Synergize with CTLA-4 Blockade to Reject Preimplanted Tumors [J].
Curran, Michael A. ;
Allison, James P. .
CANCER RESEARCH, 2009, 69 (19) :7747-7755
[6]   Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects [J].
Dai, XM ;
Ryan, GR ;
Hapel, AJ ;
Dominguez, MG ;
Russell, RG ;
Kapp, S ;
Sylvestre, V ;
Stanley, ER .
BLOOD, 2002, 99 (01) :111-120
[7]   Leukocyte Complexity Predicts Breast Cancer Survival and Functionally Regulates Response to Chemotherapy [J].
DeNardo, David G. ;
Brennan, Donal J. ;
Rexhepaj, Elton ;
Ruffell, Brian ;
Shiao, Stephen L. ;
Madden, Stephen F. ;
Gallagher, William M. ;
Wadhwani, Nikhil ;
Keil, Scott D. ;
Junaid, Sharfaa A. ;
Rugo, Hope S. ;
Hwang, E. Shelley ;
Jirstroem, Karin ;
West, Brian L. ;
Coussens, Lisa M. .
CANCER DISCOVERY, 2011, 1 (01) :54-67
[8]   Semliki Forest virus-derived virus-like particles:: characterization of their production and transduction pathways [J].
Diatta, A ;
Piver, E ;
Collin, C ;
Vaudin, P ;
Pagès, JC .
JOURNAL OF GENERAL VIROLOGY, 2005, 86 :3129-3136
[9]   Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy [J].
Diaz-Montero, C. Marcela ;
Salem, Mohamed Labib ;
Nishimura, Michael I. ;
Garrett-Mayer, Elizabeth ;
Cole, David J. ;
Montero, Alberto J. .
CANCER IMMUNOLOGY IMMUNOTHERAPY, 2009, 58 (01) :49-59
[10]   Hierarchy of immunosuppressive strength among myeloid-derived suppressor cell subsets is determined by GM-CSF [J].
Dolcetti, Luigi ;
Peranzoni, Elisa ;
Ugel, Stefano ;
Marigo, Ilaria ;
Fernandez Gomez, Audry ;
Mesa, Circe ;
Geilich, Markus ;
Winkels, Gregor ;
Traggiai, Elisabetta ;
Casati, Anna ;
Grassi, Fabio ;
Bronte, Vincenzo .
EUROPEAN JOURNAL OF IMMUNOLOGY, 2010, 40 (01) :22-35