Low-Voltage, High-Performance Flexible Organic Field-Effect Transistors Based on Ultrathin Single-Crystal Microribbons

被引:19
作者
Chen, Hongming [1 ]
Xing, Xing [2 ]
Zhu, Miao [3 ]
Cao, Jupeng [1 ]
Ali, Muhammad Umair [4 ]
Li, Aiyun [1 ]
He, Yaowu [1 ]
Meng, Hong [1 ]
机构
[1] Peking Univ, Shenzhen Grad Sch, Sch Adv Mat, Shenzhen 518055, Peoples R China
[2] Northwestern Polytech Univ, Res & Dev Inst, Shenzhen 518057, Peoples R China
[3] Lingnan Normal Univ, Coll Phys Sci & Technol, Zhanjiang 524048, Peoples R China
[4] Peking Univ, Dept Mat Sci & Engn, Coll Engn, Beijing 100871, Peoples R China
关键词
single crystal; microribbons; OFETs; high-k; polymer insulator; flexible; THIN-FILM TRANSISTORS; POLYMER; SEMICONDUCTORS; TRANSPORT; TITANATE; MOBILITY;
D O I
10.1021/acsami.9b13871
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Organic field-effect transistors (OFETs) have acquired increasing attention because of their wide range of potential applications in electronics; nevertheless, high operating voltage and low carrier mobility are considered as major bottlenecks in their commercialization. In this work, we demonstrate low-voltage, flexible OFETs based on ultrathin single-crystal microribbons. Flexible OFETs fabricated with 2,7-dioctylbenzothieno[3,2-b]benzothiophene (C8-BTBT) based solution-processed ultrathin single-crystal microribbon as the semiconductor layer and high-k polymer, polysiloxane-poly(vinyl alcohol) composite as an insulator layer manifest a significantly low operating voltage of -4 V, and several devices showed a high mobility of >30 cm(2). V(-1)s(-1). Besides, the carrier mobility of the fabricated devices exhibits a slight degradation in static bending condition, which can be retained by 83.3% compared with its original value under a bending radius of 9 mm. As compared to the bulk C8-BTBT single-crystal-based OFET, which showed a large crack only after 50 dynamic bending cycles, our ultrathin single-crystal-based counterpart demonstrates a much better dynamic force stability. Moreover, under a 20 mm bending radius, the mobility of the device decreased by only 11.7% even after 500 bending cycles and no further decrease was observed until 1000 bending cycles. Our findings reveal that ultrathin C8-BTBT single-crystal-based flexible OFETs are promising candidates for various high-performance flexible electronic devices.
引用
收藏
页码:34188 / 34195
页数:8
相关论文
共 50 条
  • [21] Lattice strain-induced high-performance low-operating-voltage organic field-effect transistors by solution-sheared organic single crystal
    Geng, Bowen
    Zhang, Feng
    Huang, Congcong
    He, Lihua
    Li, Chengtai
    Duan, Shuming
    Ren, Xiaochen
    Hu, Wenping
    JOURNAL OF MATERIALS CHEMISTRY C, 2024, 12 (14) : 5012 - 5018
  • [22] Frequency operation of low-voltage, solution-processed organic field-effect transistors
    Caironi, M.
    Noh, Y-Y
    Sirringhaus, H.
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2011, 26 (03)
  • [23] Lateral Homoepitaxy Growth of Organic Single-Crystal Arrays for Large-Scale and High-Performance Organic Field-Effect Transistors
    Jiang, Haoyu
    Lu, Zhengjun
    Deng, Wei
    Qiu, Fengquan
    Zhang, Yujian
    Shi, Jialin
    Jie, Jiansheng
    Zhang, Xiujuan
    ACS MATERIALS LETTERS, 2023, 5 (11): : 3126 - 3135
  • [24] High-Performance Organic Field-Effect Transistors
    Braga, Daniele
    Horowitz, Gilles
    ADVANCED MATERIALS, 2009, 21 (14-15) : 1473 - 1486
  • [25] High-performance organic field-effect transistors based on single-crystalline microribbons of a two-dimensional fused heteroarene semiconductor
    Wang, Yingfeng
    Zou, Sufen
    Gao, Jianhua
    Zhang, Huarong
    Lai, Guoqiao
    Yang, Chengdong
    Xie, Hui
    Fang, Renren
    Li, Hongxiang
    Hu, Wenping
    CHEMICAL COMMUNICATIONS, 2015, 51 (60) : 11961 - 11963
  • [26] High-Performance Organic Field-Effect Transistors and Inverters with Good Flexibility and Low Operating Voltage
    Yang, Fukang
    Liu, Shining
    Li, Congling
    Lv, Aifeng
    CHEMPHYSCHEM, 2025, 26 (02)
  • [27] Low-Voltage and High-Performance Multilayer MoS2 Field-Effect Transistors with Graphene Electrodes
    Singh, Arun Kumar
    Hwang, Chanyong
    Eom, Jonghwa
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (50) : 34699 - 34705
  • [28] High performance ambipolar organic field-effect transistors based on indigo derivatives
    Pitayatanakul, Oratai
    Higashino, Toshiki
    Kadoya, Tomofumi
    Tanaka, Masaki
    Kojima, Hirotaka
    Ashizawa, Minoru
    Kawamoto, Tadashi
    Matsumoto, Hidetoshi
    Ishikawa, Ken
    Mori, Takehiko
    JOURNAL OF MATERIALS CHEMISTRY C, 2014, 2 (43) : 9311 - 9317
  • [29] Semiconductor:polymer blend ratio dependent performance and stability in low voltage flexible organic field-effect transistors
    Raghuwanshi, Vivek
    Bharti, Deepak
    Mahato, Ajay Kumar
    Varun, Ishan
    Tiwari, Shree Prakash
    SYNTHETIC METALS, 2018, 236 : 54 - 60
  • [30] Low-voltage and high-performance field-effect transistors based on ZnxSn1-xO nanofibers with a ZrOx dielectric
    Wang, Zhen
    Meng, You
    Cui, Youchao
    Fan, Caixuan
    Liu, Guoxia
    Shin, Byoungchul
    Feng, Dejun
    Shan, Fukai
    NANOSCALE, 2018, 10 (30) : 14712 - 14718