Subject matching for cross-subject EEG-based recognition of driver states related to situation awareness

被引:29
|
作者
Li, Ruilin [1 ,2 ]
Wang, Lipo [1 ]
Sourina, Olga [2 ]
机构
[1] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
[2] Fraunhofer Singapore, Singapore 639798, Singapore
基金
新加坡国家研究基金会;
关键词
Situation awareness; Electroencephalography (EEG); Transfer learning; Machine learning; Classification; BATCH NORMALIZATION; CLASSIFICATION;
D O I
10.1016/j.ymeth.2021.04.009
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Situation awareness (SA) has received much attention in recent years because of its importance for operators of dynamic systems. Electroencephalography (EEG) can be used to measure mental states of operators related to SA. However, cross-subject EEG-based SA recognition is a critical challenge, as data distributions of different subjects vary significantly. Subject variability is considered as a domain shift problem. Several attempts have been made to find domain-invariant features among subjects, where subject-specific information is neglected. In this work, we propose a simple but efficient subject matching framework by finding a connection between a target (test) subject and source (training) subjects. Specifically, the framework includes two stages: (1) we train the model with multi-source domain alignment layers to collect source domain statistics. (2) During testing, a distance is computed to perform subject matching in the latent representation space. We use a reciprocal exponential function as a similarity measure to dynamically select similar source subjects. Experiment results show that our framework achieves a state-of-the-art accuracy 74.32% for the Taiwan driving dataset.
引用
收藏
页码:136 / 143
页数:8
相关论文
共 50 条
  • [1] EEG-based Cross-subject Mental Fatigue Recognition
    Liu, Yisi
    Lan, Zirui
    Cui, Jian
    Sourina, Olga
    Muller-Wittig, Wolfgang
    2019 INTERNATIONAL CONFERENCE ON CYBERWORLDS (CW), 2019, : 247 - 252
  • [2] EEG-Based Cross-Subject Driver Drowsiness Recognition With an Interpretable Convolutional Neural Network
    Cui, Jian
    Lan, Zirui
    Sourina, Olga
    Muller-Wittig, Wolfgang
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (10) : 7921 - 7933
  • [3] Cross-Subject EEG-Based Emotion Recognition with Deep Domain Confusion
    Zhang, Weiwei
    Wang, Fei
    Jiang, Yang
    Xu, Zongfeng
    Wu, Shichao
    Zhang, Yahui
    INTELLIGENT ROBOTICS AND APPLICATIONS, ICIRA 2019, PT I, 2019, 11740 : 558 - 570
  • [4] Toward cross-subject and cross-session generalization in EEG-based emotion recognition: Systematic review, taxonomy, and methods
    Apicella, Andrea
    Arpaia, Pasquale
    D'Errico, Giovanni
    Marocco, Davide
    Mastrati, Giovanna
    Moccaldi, Nicola
    Prevete, Roberto
    NEUROCOMPUTING, 2024, 604
  • [5] EEGMatch: Learning With Incomplete Labels for Semisupervised EEG-Based Cross-Subject Emotion Recognition
    Zhou, Rushuang
    Ye, Weishan
    Zhang, Zhiguo
    Luo, Yanyang
    Zhang, Li
    Li, Linling
    Huang, Gan
    Dong, Yining
    Zhang, Yuan-Ting
    Liang, Zhen
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024,
  • [6] From Intricacy to Conciseness: A Progressive Transfer Strategy for EEG-Based Cross-Subject Emotion Recognition
    Cai, Ziliang
    Wang, Lingyue
    Guo, Miaomiao
    Xu, Guizhi
    Guo, Lei
    Li, Ying
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2022, 32 (03)
  • [7] Self-supervised contrastive learning for EEG-based cross-subject motor imagery recognition
    Li, Wenjie
    Li, Haoyu
    Sun, Xinlin
    Kang, Huicong
    An, Shan
    Wang, Guoxin
    Gao, Zhongke
    JOURNAL OF NEURAL ENGINEERING, 2024, 21 (02)
  • [8] Personal-Zscore: Eliminating Individual Difference for EEG-Based Cross-Subject Emotion Recognition
    Chen, Huayu
    Sun, Shuting
    Li, Jianxiu
    Yu, Ruilan
    Li, Nan
    Li, Xiaowei
    Hu, Bin
    IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2023, 14 (03) : 2077 - 2088
  • [9] EEG Feature Selection for Emotion Recognition Based on Cross-subject Recursive Feature Elimination
    Zhang, Wei
    Yin, Zhong
    PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 6256 - 6261
  • [10] Standardization-refinement domain adaptation method for cross-subject EEG-based classification in imagined speech recognition
    Jimenez-Guarneros, Magdiel
    Gomez-Gil, Pilar
    PATTERN RECOGNITION LETTERS, 2021, 141 : 54 - 60