On adaptive timestepping for weakly instationary solutions of hyperbolic conservation laws via adjoint error control

被引:4
作者
Steiner, Christina [1 ]
Noelle, Sebastian [1 ]
机构
[1] Rhein Westfal TH Aachen, IGPM, Aachen, Germany
关键词
hyperbolic conservation laws; weakly instationary solutions; adaptive timestepping; adjoint error control; FINITE-ELEMENT METHODS; PARABOLIC PROBLEMS;
D O I
10.1002/cnm.1183
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
We study a recent timestep-adaptation technique for hyperbolic conservation laws. The key tool is a space time splitting of adjoint error representations for target functionals due to Suli (An Introduction to Recent Developments in Theory and Numerics for Conservation Laws. Lecture Notes in Computational Science and Engineering. Springer: Berlin, 1998; 123-194) and Hartmann (A posteriori Fehlerschatzung und adaptive Schrittweiten- und Ortsgittersteuerung bei Galerkin-Verfahren fur die Warmeleitungsgleichung. Diplomarbeit, Institut fur Angewandte Mathematik, Universitat Heidelberg, 1998). It provides an efficient choice of timesteps for implicit computations of weakly instationary flows. The timestep will be very large in regions of stationary flow and become small when a perturbation enters the flow field. Besides using adjoint techniques that are already well established, we also add a new ingredient that simplifies the computation of the dual problem. Owing to Galerkin orthogonality, the dual solution phi does not enter the error representation as such. Instead, the relevant term is the difference of the dual solution and its projection to the finite element space, phi -phi(h). We can show that it is therefore sufficient to compute the spatial gradient of the dual solution, w = del phi. This gradient satisfies a conservation law instead of a transport equation, and it can therefore be computed with the same algorithm as the forward problem, and in the same finite element space. We demonstrate the capabilities of the approach for a weakly instationary test problem for scalar conservation laws. Copyright (C) 2008 John Wiley & Sons, Ltd.
引用
收藏
页码:790 / 806
页数:17
相关论文
共 21 条
[1]  
BARTH T, 2003, LECT NOTES COMPUTATI, V25, P47
[2]  
BARTH T, 2002, P FINITE VOLUMES COM, V3, P24
[3]  
Becker R, 2001, ACT NUMERIC, V10, P1, DOI 10.1017/S0962492901000010
[4]  
Becker R, 1996, East-West J Numer Math, V4, P237
[5]   An adaptive multiscale finite volume solver for unsteady and steady state flow computations [J].
Bramkamp, F ;
Lamby, P ;
Müller, S .
JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 197 (02) :460-490
[6]   THE RUNGE-KUTTA LOCAL PROJECTION DISCONTINUOUS GALERKIN FINITE-ELEMENT METHOD FOR CONSERVATION-LAWS .4. THE MULTIDIMENSIONAL CASE [J].
COCKBURN, B ;
HOU, SC ;
SHU, CW .
MATHEMATICS OF COMPUTATION, 1990, 54 (190) :545-581
[7]   Partial differential equations of mathematical physics [J].
Courant, R ;
Friedrichs, K ;
Lewy, H .
MATHEMATISCHE ANNALEN, 1928, 100 :32-74
[8]   Adaptive finite element methods for parabolic problems - VI: Analytic semigroups [J].
Eriksson, K ;
Johnson, C ;
Larsson, S .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (04) :1315-1325
[9]   ADAPTIVE FINITE-ELEMENT METHODS FOR PARABOLIC PROBLEMS .5. LONG-TIME INTEGRATION [J].
ERIKSSON, K ;
JOHNSON, C .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1995, 32 (06) :1750-1763
[10]   ADAPTIVE FINITE-ELEMENT METHODS FOR PARABOLIC PROBLEMS .1. A LINEAR-MODEL PROBLEM [J].
ERIKSSON, K ;
JOHNSON, C .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (01) :43-77