Variations in energy spectra and water-to-material stopping-power ratios in three-dimensional conformal and intensity-modulated photon fields

被引:20
作者
Jang, Si Young
Liu, H. Helen
Mohan, Radhe
Siebers, Jeffrey V.
机构
[1] Univ Texas, MD Anderson Canc Ctr, Dept Radiat Phys, Houston, TX 77030 USA
[2] Virginia Commonwealth Univ, Dept Radiat Oncol, Richmond, VA 23298 USA
关键词
energy spectrum; stopping-power ratio; IMRT; Monte Carlo simulation; radiographic films; thermoluminescent dosimeters;
D O I
10.1118/1.2710550
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Because of complex dose distributions and dose gradients that are created in three-dimensional conformal radiotherapy (3D-CRT) and intensity-modulated radiation therapy (IMRT), photon- and electron-energy spectra might change significantly with spatial locations and doses. This study examined variations in photon- and electron-energy spectra in 3D-CRT and IMRT photon fields. The effects of spectral variations on water-to-material stopping-power ratios used in Monte Carlo treatment planning systems and the responses of energy-dependent dosimeters, such as thermoluminescent dosimeters (TLDs) and radiographic films were further studied. The EGSnrc Monte Carlo code was used to simulate megavoltage 3D-CRT and IMRT photon fields. The photon- and electron-energy spectra were calculated in 3D water phantoms and anthropomorphic phantoms based on the fluence scored in voxel grids. We then obtained the water-to-material stopping-power ratios in the local voxels using the Spencer-Attix cavity theory. Changes in the responses of films and TLDs were estimated based on the calculated local energy spectra and published data on the dosimeter energy dependency. Results showed that the photon-energy spectra strongly depended on spatial positions and doses in both the 3D-CRT and IMRT fields. The relative fraction of low-energy photons (< 100 keV) increased inversely with the photon dose in low-dose regions of the fields. A similar but smaller effect was observed for electrons in the phantoms. The maximum variation of the water-to-material stopping-power ratio over the range of calculated dose for both 3D-CRT and IMRT was negligible (< 1.0 %) for ICRU tissue, cortical bone, and soft bone and less than 3.6% for dry air and lung. Because of spectral softening at low doses, radiographic films in the phantoms could over-respond to dose by more than 30%, whereas the over-response of TLDs was less than 10%. Thus, spatial variations of the photon- and electron-energy spectra should be considered as important factors in 3D-CRT and IMRT dosimetry. (c) 2007 American Association of Physicists in Medicine.
引用
收藏
页码:1388 / 1397
页数:10
相关论文
共 44 条
[1]   STOPPING-POWER RATIO FOR A PHOTON SPECTRUM AS A WEIGHTED SUM OF THE VALUES FOR MONOENERGETIC PHOTON BEAMS [J].
ANDREO, P ;
NAHUM, AE .
PHYSICS IN MEDICINE AND BIOLOGY, 1985, 30 (10) :1055-1065
[2]   STOPPING POWER DATA FOR HIGH-ENERGY PHOTON BEAMS [J].
ANDREO, P ;
BRAHME, A .
PHYSICS IN MEDICINE AND BIOLOGY, 1986, 31 (08) :839-858
[3]  
[Anonymous], 1983, MED PHYS, V10, P741
[4]  
ATTIX F. H., 1986, Introduction to radiological physics and radiation dosimetry
[5]  
Berger M.J., 1993, 4999 NISTIR
[6]   Monte Carlo study of correction factors for Spencer-Attix cavity theory at photon energies at or above 100 keV [J].
Borg, J ;
Kawrakow, I ;
Rogers, DWO ;
Seuntjens, JP .
MEDICAL PHYSICS, 2000, 27 (08) :1804-1813
[7]   Ionization chamber-based reference dosimetry of intensity modulated radiation beams [J].
Bouchard, H ;
Seuntjens, J .
MEDICAL PHYSICS, 2004, 31 (09) :2454-2465
[8]   LOW-TEMPERATURE AND HIGH-TEMPERATURE RESPONSE OF LITHIUM-FLUORIDE DOSIMETERS TO X-RAYS [J].
BUDD, T ;
MARSHALL, M ;
PEAPLE, LHJ ;
DOUGLAS, JA .
PHYSICS IN MEDICINE AND BIOLOGY, 1979, 24 (01) :71-80
[9]   A new approach to film dosimetry for high energy photon beams: Lateral scatter filtering [J].
Burch, SE ;
Kearfott, KJ ;
Trueblood, JH ;
Sheils, WC ;
Yeo, JI ;
Wang, CKC .
MEDICAL PHYSICS, 1997, 24 (05) :775-783
[10]   Rapid radiographic film calibration for IMRT verification using automated MLC fields [J].
Childress, NL ;
Dong, L ;
Rosen, II .
MEDICAL PHYSICS, 2002, 29 (10) :2384-2390