Identifying Solar Flare Precursors Using Time Series of SDO/HMI Images and SHARP Parameters

被引:82
作者
Chen, Yang [1 ]
Manchester, Ward B. [2 ]
Hero, Alfred O. [3 ]
Toth, Gabor [2 ]
DuFumier, Benoit [3 ]
Zhou, Tian [1 ]
Wang, Xiantong [2 ]
Zhu, Haonan [3 ]
Sun, Zeyu [3 ]
Gombosi, Tamas, I [2 ]
机构
[1] Univ Michigan, Dept Stat, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Climate & Space Sci & Engn, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
来源
SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS | 2019年 / 17卷 / 10期
基金
美国国家航空航天局; 美国国家科学基金会;
关键词
solar flares; machine learning; prediction; MAGNETIC-FIELD PROPERTIES; CORONAL MASS EJECTIONS; QUIET ACTIVE REGIONS; FEATURE-SELECTION; PREDICTION; MAGNETOGRAMS; MODEL;
D O I
10.1029/2019SW002214
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this paper we present several methods to identify precursors that show great promise for early predictions of solar flare events. A data preprocessing pipeline is built to extract useful data from multiple sources, Geostationary Operational Environmental Satellites and Solar Dynamics Observatory (SDO)/Helioseismic and Magnetic Imager (HMI), to prepare inputs for machine learning algorithms. Two classification models are presented: classification of flares from quiet times for active regions and classification of strong versus weak flare events. We adopt deep learning algorithms to capture both spatial and temporal information from HMI magnetogram data. Effective feature extraction and feature selection with raw magnetogram data using deep learning and statistical algorithms enable us to train classification models to achieve almost as good performance as using active region parameters provided in HMI/Space-Weather HMI-Active Region Patch (SHARP) data files. Case studies show a significant increase in the prediction score around 20 hr before strong solar flare events.
引用
收藏
页码:1404 / 1426
页数:23
相关论文
共 59 条
[1]   Solar Flare Prediction Using Advanced Feature Extraction, Machine Learning, and Feature Selection [J].
Ahmed, Omar W. ;
Qahwaji, Rami ;
Colak, Tufan ;
Higgins, Paul A. ;
Gallagher, Peter T. ;
Bloomfield, D. Shaun .
SOLAR PHYSICS, 2013, 283 (01) :157-175
[2]  
[Anonymous], NOAA SPACE WEATHER S
[3]  
[Anonymous], 2018, Extreme events in geospace
[4]  
[Anonymous], ABS160601587 CORR
[5]  
[Anonymous], NWRA CLASSIFICATION
[6]  
[Anonymous], P 4 INT C LEARN REPR
[7]   A COMPARISON OF FLARE FORECASTING METHODS. I. RESULTS FROM THE "ALL-CLEAR" WORKSHOP [J].
Barnes, G. ;
Leka, K. D. ;
Schrijver, C. J. ;
Colak, T. ;
Qahwaji, R. ;
Ashamari, O. W. ;
Yuan, Y. ;
Zhang, J. ;
McAteer, R. T. J. ;
Bloomfield, D. S. ;
Higgins, P. A. ;
Gallagher, P. T. ;
Falconer, D. A. ;
Georgoulis, M. K. ;
Wheatland, M. S. ;
Balch, C. ;
Dunn, T. ;
Wagner, E. L. .
ASTROPHYSICAL JOURNAL, 2016, 829 (02)
[8]   Probabilistic forecasting of solar flares from vector magnetogram data [J].
Barnes, G. ;
Leka, K. D. ;
Schumer, E. A. ;
Della-Rose, D. J. .
SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS, 2007, 5 (09)
[9]   Flare Observations [J].
Benz, Arnold O. .
LIVING REVIEWS IN SOLAR PHYSICS, 2016, 14
[10]   SOLAR FLARE PREDICTION USING SDO/HMI VECTOR MAGNETIC FIELD DATA WITH A MACHINE-LEARNING ALGORITHM [J].
Bobra, M. G. ;
Couvidat, S. .
ASTROPHYSICAL JOURNAL, 2015, 798 (02)