Multi-objective quantum-behaved particle swarm optimization for economic environmental hydrothermal energy system scheduling

被引:95
|
作者
Feng, Zhong-kai [1 ]
Niu, Wen-jing [2 ]
Cheng, Chun-tian [2 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Hydropower & Informat Engn, Wuhan 430074, Peoples R China
[2] Dalian Univ Technol, Inst Hydropower & Hydroinformat, Dalian 116024, Peoples R China
关键词
Multi-objective optimization; Hydrothermal scheduling; Quantum-behaved particle swarm optimization; Chaotic mutation; Constraint handling method; DIFFERENTIAL EVOLUTION ALGORITHM; PREDATOR-PREY OPTIMIZATION; GENETIC ALGORITHM; CULTURAL ALGORITHM; WIND POWER; EMISSION; DISPATCH; RESERVOIR; MARKETS; MODEL;
D O I
10.1016/j.energy.2017.05.013
中图分类号
O414.1 [热力学];
学科分类号
摘要
With increasing attention paid to energy and environment in recent years, the hydrothermal scheduling considering economic and environmental objectives is becoming one of the most important optimization problems in power system. With two competing objectives and a set of operation constraints, the economic environmental hydrothermal scheduling problem is classified as a typical multi-objective nonlinear constrained optimization problem. Thus, in order to efficiently resolve this problem, the multi-objective quantum-behaved particle swarm optimization (MOQPSO) is presented in this paper. In MOQPSO, the elite archive set is adopted to conserve Pareto optimal solutions and provide multiple evolutionary directions for individuals, while the neighborhood searching and chaotic mutation strategies are used to enhance the search capability and diversity of population. Furthermore, a novel constraint handling method is designed to adjust the constraint violation of hydro and thermal plants, respectively. In order to verify its effectiveness, the MOQPSO is applied to a classical hydrothermal system with four hydropower plants and three thermal plants. The simulations show that the proposed method has competitive performance compared with several traditional methods. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:165 / 178
页数:14
相关论文
共 50 条
  • [21] A Novel Quantum-Behaved Particle Swarm Optimization Algorithm
    Wu, Tao
    Xie, Lei
    Chen, Xi
    Ashrafzadeh, Amir Homayoon
    Zhang, Shu
    CMC-COMPUTERS MATERIALS & CONTINUA, 2020, 63 (02): : 873 - 890
  • [22] An improved quantum-behaved particle swarm optimization for multi-peak optimization problems
    Zhao, Ji
    Sun, Jun
    Lai, Choi-Hong
    Xu, Wenbo
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2011, 88 (03) : 517 - 532
  • [23] A multi-objective chaotic particle swarm optimization for environmental/economic dispatch
    Cai, Jiejin
    Ma, Xiaoqian
    Li, Qiong
    Li, Lixiang
    Peng, Haipeng
    ENERGY CONVERSION AND MANAGEMENT, 2009, 50 (05) : 1318 - 1325
  • [24] A New Multi-objective Particle Swarm Optimization for Economic Environmental Dispatch
    Bilil, Hasnae
    Ellaia, Rachid
    Maaroufi, Mohamed
    PROCEEDINGS OF 2012 INTERNATIONAL CONFERENCE ON COMPLEX SYSTEMS (ICCS12), 2012, : 75 - 80
  • [25] A QUANTUM-BEHAVED PARTICLE SWARM OPTIMIZATION FOR HYPERSPECTRAL ENDMEMBER EXTRACTION
    Xu, Mingming
    Zhang, Liangpei
    Du, Bo
    Zhang, Lefei
    Zhang, Yuxiang
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 7030 - 7033
  • [26] An elitist promotion quantum-behaved particle swarm optimization algorithm
    Yang, Zhenlun
    Wu, Angus
    Liao, Haihua
    Xu, Jianxin
    2016 8TH INTERNATIONAL CONFERENCE ON INTELLIGENT HUMAN-MACHINE SYSTEMS AND CYBERNETICS (IHMSC), VOL. 1, 2016, : 347 - 350
  • [27] Convergence analysis and improvements of quantum-behaved particle swarm optimization
    Sun, Jun
    Wu, Xiaojun
    Palade, Vasile
    Fang, Wei
    Lai, Choi-Hong
    Xu, Wenbo
    INFORMATION SCIENCES, 2012, 193 : 81 - 103
  • [28] Quantum-Behaved Particle Swarm Optimization Based on Comprehensive Learning
    Long, HaiXia
    Zhang, XiuHong
    ADVANCES IN ELECTRONIC COMMERCE, WEB APPLICATION AND COMMUNICATION, VOL 2, 2012, 149 : 15 - 20
  • [29] Solving the economic dispatch problem with a modified quantum-behaved particle swarm optimization method
    Sun, Jun
    Fang, Wei
    Wang, Daojun
    Xu, Wenbo
    ENERGY CONVERSION AND MANAGEMENT, 2009, 50 (12) : 2967 - 2975
  • [30] Image registration with a modified quantum-behaved particle swarm optimization
    Bao, Yu
    Sun, Jun
    2011 TENTH INTERNATIONAL SYMPOSIUM ON DISTRIBUTED COMPUTING AND APPLICATIONS TO BUSINESS, ENGINEERING AND SCIENCE (DCABES), 2011, : 202 - 206