High Frequency Thermal Energy Harvesting Using Magnetic Shape Memory Films

被引:66
作者
Gueltig, Marcel [1 ]
Ossmer, Hinnerk [1 ]
Ohtsuka, Makoto [2 ]
Miki, Hiroyuki [3 ]
Tsuchiya, Koki [4 ]
Takagi, Toshiyuki [4 ]
Kohl, Manfred [1 ]
机构
[1] Karlsruhe Inst Technol KIT, Inst Microstruct Technol, D-76021 Karlsruhe, Germany
[2] Tohoku Univ, Inst Multidisciplinary Res Adv Mat, Sendai, Miyagi 9808577, Japan
[3] Tohoku Univ, Frontier Res Inst Interdisciplinary Sci, Sendai, Miyagi 9808577, Japan
[4] Tohoku Univ, Inst Fluid Sci, Sendai, Miyagi 9808577, Japan
关键词
NI2MNGA SPUTTERED FILMS; ALLOYS; PHASE; TRANSFORMATION; HEAT;
D O I
10.1002/aenm.201400751
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A new method for thermal energy harvesting at small temperature difference and high cycling frequency is presented that exploits the unique magnetic properties and actuation capability of magnetic shape memory alloy (MSMA) films. Polycrystalline films of the Ni50.4Co3.7Mn32.8In13.1 alloy are tailored, showing a large abrupt change of magnetization and low thermal hysteresis well above room temperature. Based on this material, a free-standing film device is designed that exhibits thermomagnetically induced actuation between a heat source and sink with short heat transfer times. The cycling frequency of the device is tuned by mechanical frequency up-conversion to over 200 Hz. An integrated pick-up coil converts the thermally induced change of magnetization as well as the kinetic energy to electricity. For a temperature change of 10 K, the maximum peak power density is in the order of 5 mW cm(-3).
引用
收藏
页数:8
相关论文
共 30 条
[1]   A review of power harvesting using piezoelectric materials (2003-2006) [J].
Anton, Steven R. ;
Sodano, Henry A. .
SMART MATERIALS AND STRUCTURES, 2007, 16 (03) :R1-R21
[2]   A Bistable Shape Memory Alloy Microvalve With Magnetostatic Latches [J].
Barth, Johannes ;
Megnin, Christof ;
Kohl, Manfred .
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2012, 21 (01) :76-84
[3]   A micro electromagnetic generator for vibration energy harvesting [J].
Beeby, S. P. ;
Torah, R. N. ;
Tudor, M. J. ;
Glynne-Jones, P. ;
O'Donnell, T. ;
Saha, C. R. ;
Roy, S. .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2007, 17 (07) :1257-1265
[4]   Energy harvesting vibration sources for microsystems applications [J].
Beeby, S. P. ;
Tudor, M. J. ;
White, N. M. .
MEASUREMENT SCIENCE AND TECHNOLOGY, 2006, 17 (12) :R175-R195
[5]  
Bierschenk JL, 2009, ENERGY HARVESTING TECHNOLOGIES, P337, DOI 10.1007/978-0-387-76464-1_12
[6]   MEMS design and fabrication of an electrostatic vibration-to-electricity energy converter [J].
Chiu, Yi ;
Kuo, Chiung-Ting ;
Chu, Yu-Shan .
MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2007, 13 (11-12) :1663-1669
[7]   Transmission electron microscopy study of phase compatibility in low hysteresis shape memory alloys [J].
Delville, Remi ;
Kasinathan, Sakthivel ;
Zhang, Zhiyong ;
Van Humbeeck, Jan ;
James, Richard D. ;
Schryvers, Dominique .
PHILOSOPHICAL MAGAZINE, 2010, 90 (1-4) :177-195
[8]   Cyclic deformation mechanisms in precipitated NiTi shape memory alloys [J].
Gall, K ;
Maier, H .
ACTA MATERIALIA, 2002, 50 (18) :4643-4657
[9]  
Gueltig M., 2013, P IEEE TRANSD EUR, P2803
[10]   Martensitic and magnetic transformation behaviors in Heusler-type NiMnln and NiCoMnln metamagnetic shape memory alloys [J].
Ito, W. ;
Imano, Y. ;
Kainuma, R. ;
Sutou, Y. ;
Oikawa, K. ;
Ishida, K. .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2007, 38A (04) :759-766