Landau-Bloch Theorems for Bounded Biharmonic Mappings

被引:5
作者
Aghalary, Rasoul [1 ]
Mohammadian, Ali [1 ]
Jahangiri, Jay [2 ]
机构
[1] Urmia Univ, Fac Sci, Dept Math, Orumiyeh, Iran
[2] Kent State Univ, Math Sci, Kent, OH 44242 USA
关键词
Landau-Bloch Theorems; Biharmonic Mappings; CONSTANTS;
D O I
10.2298/FIL1914593A
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We determine coefficient bounds for bounded planar biharmonic mappings and generalize the Landau-Bloch univalency theorems for such bounded biharmonic functions. The univalence radii presented here improve many related results published to date, including the most recent one [Complex Var. Elliptic Equ. 58(12) (2013), 1667-1676] and are sharp in some given cases.
引用
收藏
页码:4593 / 4601
页数:9
相关论文
共 17 条
[1]   Landau's theorem for biharmonic mappings [J].
Abdulhadi, Z. ;
Abu Muhanna, Y. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 338 (01) :705-709
[2]   On some properties of solutions of the biharmonic equation [J].
AbdulHadi, Z. ;
Abu Muhanna, Y. ;
Khuri, S. .
APPLIED MATHEMATICS AND COMPUTATION, 2006, 177 (01) :346-351
[3]  
Abdulhadi Z., 2005, J INEQUAL APPL, V5, P1
[4]   Bloch constants for planar harmonic mappings [J].
Chen, HH ;
Gauthier, PM ;
Hengartner, W .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (11) :3231-3240
[5]  
Chen HH, 2001, NATO SCI SER II MATH, V37, P129
[6]   Properties of Some Classes of Planar Harmonic and Planar Biharmonic Mappings [J].
Chen, S. H. ;
Ponnusamy, S. ;
Wang, X. .
COMPLEX ANALYSIS AND OPERATOR THEORY, 2011, 5 (03) :901-916
[7]  
CLUNIE J, 1984, ANN ACAD SCI FENN-M, V9, P3
[8]  
Conway J. B., 1978, Graduate Texts in Mathematics, V11
[9]  
Dorff M., 2004, COMPUT METH FUNCT TH, V4, P151, DOI DOI 10.1007/BF03321062
[10]  
Grigoyan A., 2006, Complex Var. Elliptic Equ., V51, P81