共 21 条
On the Asymptotic Growth of Bloch-Kato-Shafarevich-Tate Groups of Modular Forms Over Cyclotomic Extensions
被引:13
作者:
Lei, Antonio
[1
]
Loeffler, David
[2
]
Zerbes, Sarah Livia
[3
]
机构:
[1] Univ Laval, Dept Math & Stat, Pavillon Alexandre Vachon, Quebec City, PQ G1V 0A6, Canada
[2] Univ Warwick, Math Inst, Zeeman Bldg, Coventry CV4 7AL, W Midlands, England
[3] UCL, Dept Math, Gower St, London WC1E 6BT, England
来源:
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES
|
2017年
/
69卷
/
04期
基金:
加拿大自然科学与工程研究理事会;
关键词:
cyclotomic extension;
Shafarevich-Tate group;
Bloch-Kato Selmer group;
modular form;
non-ordinary prime;
p-adic Hodge theory;
P-ADIC REPRESENTATIONS;
IWASAWA THEORY;
ELLIPTIC-CURVES;
SUPERSINGULAR REDUCTION;
LOCAL-FIELD;
PRIMES;
VALUES;
D O I:
10.4153/CJM-2016-034-x
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We study the asymptotic behaviour of the Bloch-Kato-Shafarevich-Tate group of a modular form f over the cyclotomic Z(p)-extension of Q under the assumption that f is non-ordinary at p. In particular, we give upper bounds of these groups in terms of Iwasawa invariants of Selmer groups defined using p-adic Hodge Theory. These bounds have the same form as the formulae of Kobayashi, Kurihara, and Sprung for supersingular elliptic curves.
引用
收藏
页码:826 / 850
页数:25
相关论文