On the Asymptotic Growth of Bloch-Kato-Shafarevich-Tate Groups of Modular Forms Over Cyclotomic Extensions

被引:13
作者
Lei, Antonio [1 ]
Loeffler, David [2 ]
Zerbes, Sarah Livia [3 ]
机构
[1] Univ Laval, Dept Math & Stat, Pavillon Alexandre Vachon, Quebec City, PQ G1V 0A6, Canada
[2] Univ Warwick, Math Inst, Zeeman Bldg, Coventry CV4 7AL, W Midlands, England
[3] UCL, Dept Math, Gower St, London WC1E 6BT, England
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 2017年 / 69卷 / 04期
基金
加拿大自然科学与工程研究理事会;
关键词
cyclotomic extension; Shafarevich-Tate group; Bloch-Kato Selmer group; modular form; non-ordinary prime; p-adic Hodge theory; P-ADIC REPRESENTATIONS; IWASAWA THEORY; ELLIPTIC-CURVES; SUPERSINGULAR REDUCTION; LOCAL-FIELD; PRIMES; VALUES;
D O I
10.4153/CJM-2016-034-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the asymptotic behaviour of the Bloch-Kato-Shafarevich-Tate group of a modular form f over the cyclotomic Z(p)-extension of Q under the assumption that f is non-ordinary at p. In particular, we give upper bounds of these groups in terms of Iwasawa invariants of Selmer groups defined using p-adic Hodge Theory. These bounds have the same form as the formulae of Kobayashi, Kurihara, and Sprung for supersingular elliptic curves.
引用
收藏
页码:826 / 850
页数:25
相关论文
共 21 条