Geometric Phase in the Interaction System of Three-Energy Atom with Double-Mode Radiation Field

被引:0
作者
Qin, Xian-Ming [1 ]
Yu, Zhao-Xian [2 ]
机构
[1] Chongqing Univ Sci & Technol, Dept Math & Phys, Chongqing 401331, Peoples R China
[2] Beijing Informat Sci & Technol Univ, Dept Phys, Beijing 100192, Peoples R China
关键词
Geometric phase; Three-energy atom; Double-mode radiation field; QUANTUM-INVARIANT THEORY; BERRY PHASE; ADIABATIC APPROXIMATION; EVOLUTION; DYNAMICS;
D O I
10.1007/s10773-010-0297-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
By using the Lewis-Riesenfeld invariant theory, we have studied the dynamical and the geometric phases in the interaction system of three-energy atom with double-mode radiation field, respectively. The Aharonov-Anandan phase is also obtained under the cyclical evolution.
引用
收藏
页码:1181 / 1186
页数:6
相关论文
共 25 条
[1]   PHASE-CHANGE DURING A CYCLIC QUANTUM EVOLUTION [J].
AHARONOV, Y ;
ANANDAN, J .
PHYSICAL REVIEW LETTERS, 1987, 58 (16) :1593-1596
[3]   Critical property of the geometric phase in the Dicke model [J].
Chen, Gang ;
Li, Juqi ;
Liang, J. -Q. .
PHYSICAL REVIEW A, 2006, 74 (05)
[4]   Dynamics and Berry phase of two-species Bose-Einstein condensates [J].
Chen, ZD ;
Liang, JQ ;
Shen, SQ ;
Xie, WF .
PHYSICAL REVIEW A, 2004, 69 (02) :9
[5]   GEOMETRIC PHASE AND THE GENERALIZED INVARIANT FORMULATION [J].
GAO, XC ;
XU, JB ;
QIAN, TZ .
PHYSICAL REVIEW A, 1991, 44 (11) :7016-7021
[6]   Quantum-invariant theory and the evolution of a quantum scalar field in Robertson-Walker flat spacetimes [J].
Gao, XC ;
Gao, J ;
Qian, TZ ;
Xu, JB .
PHYSICAL REVIEW D, 1996, 53 (08) :4374-4381
[7]   Quantum-invariant theory and the evolution of a Dirac field in Friedmann-Robertson-Walker flat space-times [J].
Gao, XC ;
Fu, J ;
Shen, JQ .
EUROPEAN PHYSICAL JOURNAL C, 2000, 13 (03) :527-541
[8]   AN EXACT QUANTUM THEORY OF TIME-DEPENDENT HARMONIC OSCILLATOR AND OF A CHARGED PARTICLE IN A TIME-DEPENDENT ELECTROMAGNETIC FIELD [J].
LEWIS, HR ;
RIESENFELD, WB .
JOURNAL OF MATHEMATICAL PHYSICS, 1969, 10 (08) :1458-+
[9]   REALIZATIONS OF MAGNETIC-MONOPOLE GAUGE-FIELDS - DIATOMS AND SPIN PRECESSION [J].
MOODY, J ;
SHAPERE, A ;
WILCZEK, F .
PHYSICAL REVIEW LETTERS, 1986, 56 (09) :893-896
[10]   QUANTUM KINEMATIC APPROACH TO THE GEOMETRIC PHASE .1. GENERAL FORMALISM [J].
MUKUNDA, N ;
SIMON, R .
ANNALS OF PHYSICS, 1993, 228 (02) :205-268