NIKOL'SKII INEQUALITIES FOR LORENTZ SPACES

被引:34
作者
Ditzian, Z. [1 ]
Prymak, A. [2 ]
机构
[1] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2T1, Canada
[2] Univ Manitoba, Dept Math, Winnipeg, MB R3T 2N2, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1216/RMJ-2010-40-1-209
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A general approach is given for establishing Nikol'skii-type inequalities for various Lorentz spaces. The key ingredient for the proof is either a Bernstein-type inequality or a Remez-type inequality. Applications of our results to trigonometric polynomials on the torus T(d), algebraic polynomials on [-1, 1], spherical harmonic polynomials on the unit sphere S(d-1) in R(d), algebraic polynomials on R with Freud's weights and others will be presented.
引用
收藏
页码:209 / 223
页数:15
相关论文
共 7 条
[1]  
[Anonymous], 1995, Grad. Texts in Math.
[2]   Combinations of multivariate averages [J].
Dai, F ;
Ditzian, Z .
JOURNAL OF APPROXIMATION THEORY, 2004, 131 (02) :268-283
[3]   Multivariate polynomial inequalities with respect to doubling weights and A∞ weights [J].
Dai, Feng .
JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 235 (01) :137-170
[4]   Ul'yanov and Nikol'skii-type inequalities [J].
Ditzian, Z ;
Tikhonov, S .
JOURNAL OF APPROXIMATION THEORY, 2005, 133 (01) :100-133
[5]  
Lubinsky D.S., 2007, Surveys in Approximation Theory, V3, P1
[6]  
Sherstneva L. A., 1984, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., V4, P75
[7]   LANDAU-INEQUALITY FOR FUNCTION OF SEVERAL-VARIABLES [J].
TIMOFEEV, VG .
MATHEMATICAL NOTES, 1985, 37 (5-6) :369-377