Cross curvature flow on a negatively curved solid torus

被引:6
作者
DeBlois, Jason [1 ]
Knopf, Dan
Young, Andrea
机构
[1] Univ Illinois, Dept Math Stat & Comp Sci, Chicago, IL 60607 USA
基金
美国国家科学基金会;
关键词
HYPERBOLIC DEHN SURGERY; RICCI FLOW; 3-MANIFOLDS; MANIFOLDS; BOUNDS; SPACE;
D O I
10.2140/agt.2010.10.343
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The classic 2 pi-Theorem of Gromov and Thurston constructs a negatively curved metric on certain 3-manifolds obtained by Dehn filling. By Geometrization, any such manifold admits a hyperbolic metric. We outline a program using cross curvature flow to construct a smooth one-parameter family of metrics between the "2 pi-metric" and the hyperbolic metric. We make partial progress in the program, proving long-time existence, preservation of negative sectional curvature, curvature bounds and integral convergence to hyperbolic for the metrics under consideration.
引用
收藏
页码:343 / 372
页数:30
相关论文
共 28 条
[1]  
Acquistapace P., 1989, PITMAN RES NOTES MAT, V208, P97
[2]   Lower bounds on volumes of hyperbolic Haken 3-manifolds [J].
Agol, Ian ;
Storm, Peter A. ;
Thurston, William P. .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 20 (04) :1053-1077
[3]   Bounds on exceptional Dehn filling [J].
Agol, Ian .
GEOMETRY & TOPOLOGY, 2000, 4 :431-449
[4]  
Angenent S, 2004, MATH RES LETT, V11, P493
[5]  
[Anonymous], ARXIVMATHDG0303109
[6]  
[Anonymous], 1994, Graduate Texts in Mathematics
[7]  
BENEDETTI R., 1992, LECT HYPERBOLIC GEOM, DOI [10.1007/978-3-642-58158-8, DOI 10.1007/978-3-642-58158-8]
[8]   Spherical space forms and Dehn filling [J].
Bleiler, SA ;
Hodgson, CD .
TOPOLOGY, 1996, 35 (03) :809-833
[9]   Short-time existence of solutions to the cross curvature flow on 3-manifolds [J].
Buckland, JA .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (06) :1803-1807
[10]  
CANARY RD, 1987, LONDON MATH SOC LECT, V111, P3