ON THE CAUCHY PROBLEM FOR FOCUSING AND DEFOCUSING GROSS-PITAEVSKII HIERARCHIES

被引:49
作者
Chen, Thomas [1 ]
Pavlovic, Natasa [1 ]
机构
[1] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
Bose gas; Gross-Pitaevskii hierarchy; nonlinear Schrodinger equation; MEAN-FIELD-LIMIT; CLASSICAL-LIMIT; DYNAMICS; DERIVATION; EQUATION;
D O I
10.3934/dcds.2010.27.715
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the dynamical Gross-Pitaevskii (GP) hierarchy on R-d, d >= 1, for cubic, quintic, focusing and defocusing interactions. For both the focusing and defocusing case, and any d >= 1, we prove local existence and uniqueness of solutions in certain Sobolev type spaces H-xi(alpha) of sequences of marginal density matrices which satisfy the space-time bound conjectured by Klainerman and Machedon for the cubic GP hierarchy in d = 3. The regularity is accounted for by [GRAPHICS] where p = 2 for the cubic, and p = 4 for the quintic GP hierarchy; the parameter xi > 0 is arbitrary and determines the energy scale of the problem. For focusing GP hierarchies, we prove lower bounds on the blowup rate. Moreover, pseudoconformal invariance is established in the cases corresponding to L-2 criticality, both in the focusing and defocusing context. All of these results hold without the assumption of factorized initial conditions.
引用
收藏
页码:715 / 739
页数:25
相关论文
共 24 条
[1]   Rigorous derivation of the cubic NLS in dimension one [J].
Adami, Riccardo ;
Golse, Francois ;
Teta, Alessandro .
JOURNAL OF STATISTICAL PHYSICS, 2007, 127 (06) :1193-1220
[2]   Bose-Einstein quantum phase transition in an optical lattice model [J].
Aizenman, M ;
Lieb, EH ;
Seiringer, R ;
Solovej, JP ;
Yngvason, J .
PHYSICAL REVIEW A, 2004, 70 (02) :023612-1
[3]  
[Anonymous], 2006, CBMS
[4]   Smooth Feshbach map and operator-theoretic renormalization group methods [J].
Bach, V ;
Chen, T ;
Fröhlich, J ;
Sigal, IM .
JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 203 (01) :44-92
[5]  
Cazenave T, 2003, COURANT LECT NOTES
[6]  
CHEN T, QUINTIC NLS MEAN FIE
[7]   Gross-Pitaevskii equation as the mean field limit of weakly coupled bosons [J].
Elgart, A ;
Erdös, L ;
Schlein, B ;
Yau, HT .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2006, 179 (02) :265-283
[8]  
Erdo, 2001, Adv. Theor. Math. Phys., V5, P1169
[9]   Derivation of the cubic non-linear Schrodinger equation from quantum dynamics of many-body systems [J].
Erdos, Laszlo ;
Schlein, Benjamin ;
Yau, Horng-Tzer .
INVENTIONES MATHEMATICAE, 2007, 167 (03) :515-614
[10]   Derivation of the Gross-Pitaevskii hierarchy for the dynamics of Bose-Einstein condensate [J].
Erdos, Laszlo ;
Schlein, Benjamin ;
Yau, Horng-Tzer .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2006, 59 (12) :1659-1741