The staufen/pumilio pathway is involved in Drosophila long-term memory

被引:377
作者
Dubnau, J
Chiang, AS
Grady, L
Barditch, J
Gossweiler, S
McNeil, J
Smith, P
Buldoc, F
Scott, R
Certa, U
Broger, C
Tully, T
机构
[1] Cold Spring Harbor Lab, Cold Spring Harbor, NY 11724 USA
[2] Natl Tsing Hua Univ, Dept Life Sci, Hsinchu 30043, Taiwan
[3] F Hoffmann La Roche & Co Ltd, CH-4070 Basel, Switzerland
[4] Helicon Therapeut, Farmingdale, NY 11735 USA
关键词
D O I
10.1016/S0960-9822(03)00064-2
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Background: Memory formation after olfactory learning in Drosophila displays behavioral and molecular properties similar to those of other species. Particularly, long-term memory requires CREB-dependent transcription, suggesting the regulation of "downstream" genes. At the cellular level, long-lasting synaptic plasticity in many species also appears to depend on CREB-mediated gene transcription and subsequent structural and functional modification of relevant synapses. To date, little is known about the molecular-genetic mechanisms that contribute to this process during memory formation. Results: We used two complementary strategies to identify these genes. From DNA microarrays, we identified 42 candidate memory genes that appear to be transcriptionally regulated in normal flies during memory formation. Via mutagenesis, we have independently identified 60 mutants with defective long-term memory and have defined molecular lesions for 58 of these. The pumilio translational repressor was found from both approaches, along with six additional genes with established roles in local control of mRNA translation. In vivo disruptions of four genes-staufen, pumilio, oskar, and eIF-5C-yield defective memory. Conclusions: Convergent findings from our behavioral screen for memory mutants and DNA microarray analysis of transcriptional responses during memory formation in normal animals suggest the involvement of the pumilio/staufen pathway in memory. Behavioral experiments confirm a role for this pathway and suggest a molecular mechanism for synapse-specific modification.
引用
收藏
页码:286 / 296
页数:11
相关论文
共 99 条
  • [1] Dynamic visualization of local protein synthesis in hippocampal neurons
    Aakalu, G
    Smith, WB
    Nguyen, N
    Jiang, CG
    Schuman, EM
    [J]. NEURON, 2001, 30 (02) : 489 - 502
  • [2] C/EBP IS AN IMMEDIATE-EARLY GENE REQUIRED FOR THE CONSOLIDATION OF LONG-TERM FACILITATION IN APLYSIA
    ALBERINI, CM
    GHIRARDI, M
    METZ, R
    KANDEL, ER
    [J]. CELL, 1994, 76 (06) : 1099 - 1114
  • [3] [Anonymous], 1993, Resampling-based multiple testing: Examples and methods for P-value adjustment
  • [4] Maternal Pumilio acts together with Nanos in germline development in Drosophila embryos
    Asaoka-Taguchi, M
    Yamada, M
    Nakamura, A
    Hanyu, K
    Kobayashi, S
    [J]. NATURE CELL BIOLOGY, 1999, 1 (07) : 431 - 437
  • [5] Expression of constitutively active CREB protein facilitates the late phase of long-term potentiation by enhancing synaptic capture
    Barco, A
    Alarcon, JM
    Kandel, ER
    [J]. CELL, 2002, 108 (05) : 689 - 703
  • [6] APLYSIA CREB2 REPRESSES LONG-TERM FACILITATION - RELIEF OF REPRESSION CONVERTS TRANSIENT FACILITATION INTO LONG-TERM FUNCTIONAL AND STRUCTURAL-CHANGE
    BARTSCH, D
    GHIRARDI, M
    SKEHEL, PA
    KARL, KA
    HERDER, SP
    CHEN, M
    BAILEY, CH
    KANDEL, ER
    [J]. CELL, 1995, 83 (06) : 979 - 992
  • [7] DEFICIENT LONG-TERM-MEMORY IN MICE WITH A TARGETED MUTATION OF THE CAMP-RESPONSIVE ELEMENT-BINDING PROTEIN
    BOURTCHULADZE, R
    FRENGUELLI, B
    BLENDY, J
    CIOFFI, D
    SCHUTZ, G
    SILVA, AJ
    [J]. CELL, 1994, 79 (01) : 59 - 68
  • [8] BOYNTON S, 1992, GENETICS, V131, P655
  • [9] A transient, neuron-wide form of CREB-mediated long-term facilitation can be stabilized at specific synapses by local protein synthesis
    Casadio, A
    Martin, KC
    Giustetto, M
    Zhu, HX
    Chen, M
    Bartsch, D
    Bailey, CH
    Kandel, ER
    [J]. CELL, 1999, 99 (02) : 221 - 237
  • [10] CHAIN DG, 1995, J NEUROSCI, V15, P7592