Cumulative effects of amino acid substitutions and hydrophobic mismatch upon the transmembrane stability and conformation of hydrophobic α-helices

被引:83
作者
Caputo, GA
London, E [1 ]
机构
[1] SUNY Stony Brook, Dept Biochem & Cell Biol, Stony Brook, NY 11794 USA
[2] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA
关键词
D O I
10.1021/bi026697d
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The effects of amino acid substitutions upon the behavior of poly(Leu)-rich alpha-helices inserted into model membrane vesicles were investigated. One or two consecutive Leu. residues in the hydrophobic core of the helix were substituted with A, F, G, S, D, K, H, P, GG, SS, PG, PP, KK, or DD residues. A Trp placed at the center of the sequence allowed assessment of peptide behavior via fluorescence emission lambda(max) and dual quenching analysis of Trp depth [Caputo, G. A., and London, E. (2003) Biochemistry 42, 3265-3274]. In vesicles composed of dioleoylphosphatidylcholine (DOPC), all of the peptides with single substitutions adopted a transmembrane (TM) state. Experiments were also performed in thicker bilayers composed of dierucoylphosphatidylcholine (DEuPC). In DEuPC vesicles TM states were destabilized by mismatch between helix length and bilayer thickness. Nevertheless, in DEuPC vesicles TM states were still prevalent for peptides with single substitutions, although less so for peptides with P, K, H, or D substitutions. In contrast to single substitutions, certain consecutive double substitutions strongly interfered with formation of TM states. In both DOPC and DEuPC vesicles DD and KK substitutions abolished the normal TM state, but GG and SS substitutions had little effect. In even wider bilayers, a SS substitution reduced the formation of a TM state. A peptide with a PP substitution maintained the TM state in DOPC vesicles, but in DEuPC vesicles the level of formation of the TM state was significantly reduced. Upon disruption of normal TM insertion peptides moved close to the bilayer surface, with the exception of the KK-substituted peptide in DOPC vesicles, which formed a truncated TM segment. These studies begin to provide a detailed relationship between sequence and the stability of TM insertion and show that the influence of insertion-destabilizing residues upon hydrophobic helices can be strongly modulated by properties such as mismatch. For certain helix-forming hydrophobic sequences, sensitivity to lipid structure may be sufficient to induce large conformational changes in vivo.
引用
收藏
页码:3275 / 3285
页数:11
相关论文
共 39 条
[1]   Serine and threonine residues bend α-helices in the χ1 = g- conformation [J].
Ballesteros, JA ;
Deupi, X ;
Olivella, M ;
Haaksma, EEJ ;
Pardo, L .
BIOPHYSICAL JOURNAL, 2000, 79 (05) :2754-2760
[2]   CHOLESTEROL AND THE GOLGI-APPARATUS [J].
BRETSCHER, MS ;
MUNRO, S .
SCIENCE, 1993, 261 (5126) :1280-1281
[3]   Using a novel dual fluorescence quenching assay for measurement of tryptophan depth within lipid Bilayers to determine hydrophobic α-helix locations within membranes [J].
Caputo, GA ;
London, E .
BIOCHEMISTRY, 2003, 42 (11) :3265-3274
[4]   Charge pair interactions in a model transmembrane helix in the ER membrane [J].
Chin, CN ;
von Heijne, G .
JOURNAL OF MOLECULAR BIOLOGY, 2000, 303 (01) :1-5
[5]   Motifs of serine and threonine can drive association of transmembrane helices [J].
Dawson, JP ;
Weinger, JS ;
Engelman, DM .
JOURNAL OF MOLECULAR BIOLOGY, 2002, 316 (03) :799-805
[6]   Different membrane anchoring positions of tryptophan and lysine in synthetic transmembrane α-helical peptides [J].
de Planque, MRR ;
Kruijtzer, JAW ;
Liskamp, RMJ ;
Marsh, D ;
Greathouse, DV ;
Koeppe, RE ;
de Kruijff, B ;
Killian, JA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (30) :20839-20846
[7]   Sensitivity of single membrane-spanning α-helical peptides to hydrophobic mismatch with a lipid bilayer:: Effects on backbone structure, orientation, and extent of membrane incorporation [J].
de Planque, MRR ;
Goormaghtigh, E ;
Greathouse, DV ;
Koeppe, RE ;
Kruijtzer, JAW ;
Liskamp, RMJ ;
de Kruijff, B ;
Killian, JA .
BIOCHEMISTRY, 2001, 40 (16) :5000-5010
[8]   Interfacial positioning and stability of transmembrane peptides in lipid bilayers studied by combining hydrogen/deuterium exchange and mass spectrometry [J].
Demmers, JAA ;
van Duijn, E ;
Haverkamp, J ;
Greathouse, DV ;
Koeppe, RE ;
Heck, AJR ;
Killian, JA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (37) :34501-34508
[9]   Polar side chains drive the association of model transmembrane peptides [J].
Gratkowski, H ;
Lear, JD ;
DeGrado, WF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (03) :880-885
[10]   Interaction of the membrane-inserted diphtheria toxin T domain with peptides and its possible implications for chaperone-like T domain behavior [J].
Hammond, K ;
Caputo, GA ;
London, E .
BIOCHEMISTRY, 2002, 41 (09) :3243-3253