MEMS High Temperature Gradient Sensor for Skin-Friction Measurements in Highly Turbulent Flows

被引:7
作者
Ghouila-Houri, Cecile [1 ]
Talbi, Abdelkrim [1 ]
Viard, Romain [2 ,3 ]
Gallas, Quentin [4 ]
Garnier, Eric [5 ]
Molton, Pascal [5 ]
Delva, Jerome [4 ]
Merlen, Alain [1 ]
Pernod, Philippe [1 ]
机构
[1] Univ Lille, Univ Polytech Hautsde France, CNRS, Cent Lille,Yncrea ISEN,IEMN,UMR 8520, F-59000 Lille, France
[2] Thurmelec, F-68840 Pulversheim, Cecile Ghouila, France
[3] JMH Concept, F-68100 Mulhouse, France
[4] Univ Lille, CNRS, Labo Mecan Fluides Lille Kampe Feriet, ONERA,Cent Lille,Arts & Metiers Inst Technol,UMR, F-59000 Lille, France
[5] Off Natl Etud & Rech Aerosp, French Aerosp Lab, DAAA, F-92190 Meudon, France
关键词
Wires; Temperature measurement; Temperature sensors; Heating systems; Sensor phenomena and characterization; Key-words alphabetic order;
D O I
10.1109/JSEN.2020.2991785
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents and discusses the results obtained with a MEMS (Micro-Electro-Mechanical System) high temperature gradient sensor for time-averaged and fluctuating skin-friction measurements in highly turbulent flows. Designed as a robust wall-mounted suspended hot-wire structure, the micro-sensor was made using conventional microfabrication techniques, compatible with microelectronics for designing integrated smart systems. Successfully implemented into two air wind tunnels, the sensor was tested in a large range of turbulent flows, with mainstream velocities going up to 270 m/s (Mach number of 0.79), which corresponds to the mean velocity of airliner cruise flights. The experiments demonstrated the wide dynamic range of the micro-sensor without reaching its limits. The micro-sensor thereby demonstrated its value for measuring turbulence in aerodynamic applications, being particularly suitable for aeronautics.
引用
收藏
页码:9749 / 9755
页数:7
相关论文
共 21 条
[1]   Turbulence measurements using a nanoscale thermal anemometry probe [J].
Bailey, Sean C. C. ;
Kunkel, Gary J. ;
Hultmark, Marcus ;
Vallikivi, Margit ;
Hill, Jeffrey P. ;
Meyer, Karl A. ;
Tsay, Candice ;
Arnold, Craig B. ;
Smits, Alexander J. .
JOURNAL OF FLUID MECHANICS, 2010, 663 :160-179
[2]   A Microscale Differential Capacitive Direct Wall-Shear-Stress Sensor [J].
Chandrasekharan, Vijay ;
Sells, Jeremy ;
Meloy, Jessica ;
Arnold, David P. ;
Sheplak, Mark .
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2011, 20 (03) :622-635
[3]   Nanoscale sensing devices for turbulence measurements [J].
Fan, Y. ;
Arwatz, G. ;
van Buren, T. W. ;
Hoffman, D. E. ;
Hultmark, M. .
EXPERIMENTS IN FLUIDS, 2015, 56 (07)
[4]   Flow control: The future [J].
Gad-el-Hak, M .
JOURNAL OF AIRCRAFT, 2001, 38 (03) :402-418
[5]   High temperature gradient micro-sensor for wall shear stress and flow direction measurements [J].
Ghouila-Houri, C. ;
Claudel, J. ;
Gerbedoen, J-C ;
Gallas, Q. ;
Garnier, E. ;
Merlen, A. ;
Viard, R. ;
Talbi, A. ;
Pernod, P. .
APPLIED PHYSICS LETTERS, 2016, 109 (24)
[6]  
Ghouila-Houri C., 2019, P IEEE SENSORS, P1, DOI DOI 10.1109/SENSORS43011.2019.8956802
[7]   High temperature gradient micro-sensors array for flow separation detection and control [J].
Ghouila-Houri, Cecile ;
Talbi, Abdelkrim ;
Viard, Romain ;
Gallas, Quentin ;
Garnier, Eric ;
Merlen, Alain ;
Pernod, Philippe .
SMART MATERIALS AND STRUCTURES, 2019, 28 (12)
[8]   Unsteady flows measurements using a calorimetric wall shear stress micro-sensor [J].
Ghouila-Houri, Cecile ;
Talbi, Abdelkrim ;
Viard, Romain ;
Gallas, Quentin ;
Garnier, Eric ;
Merlen, Alain ;
Pernod, Philippe .
EXPERIMENTS IN FLUIDS, 2019, 60 (04)
[9]   High temperature gradient calorimetric wall shear stress micro-sensor for flow separation detection [J].
Ghouila-Houri, Cecile ;
Gallas, Quentin ;
Garnier, Eric ;
Merlen, Alain ;
Viard, Romain ;
Talbi, Abdelkrim ;
Pernod, Philippe .
SENSORS AND ACTUATORS A-PHYSICAL, 2017, 266 :232-241
[10]  
Gimeno L, 2009, THESIS U LILLE, V1