Flux Density Variations at 3.6cm in the Massive Star-forming Region W49A

被引:5
|
作者
De Pree, C. G. [1 ]
Galvan-Madrid, R. [2 ]
Goss, W. M. [3 ]
Klessen, R. S. [4 ,5 ]
Mac Low, M. -M. [6 ]
Peters, T. [7 ]
Wilner, D. [8 ]
Bates, J. [1 ]
Melo, T. [1 ]
Presler-Marshall, B. [1 ]
Webb-Forgus, R. [1 ]
机构
[1] Agnes Scott Coll, Dept Phys & Astron, 141 East Coll Ave, Decatur, GA 30030 USA
[2] UNAM, Inst Radioastron & Astrofis IRyA, Morelia 58089, Michoacan, Mexico
[3] Natl Radio Astron Observ, Socorro, NM 87801 USA
[4] Heidelberg Univ, Ctr Astron, Inst Theoret Astrophys, D-69120 Heidelberg, Germany
[5] Heidelberg Univ, Interdisciplinary Ctr Sci Comp, D-69120 Heidelberg, Germany
[6] Amer Museum Nat Hist, Dept Astrophys, New York, NY 10024 USA
[7] Max Planck Inst Astrophys, D-85748 Garching, Germany
[8] Smithsonian Astrophys Observ, Cambridge, MA 02138 USA
关键词
H II regions; ISM: individual objects (W49A); ISM: kinematics and dynamics; techniques: interferometric; H-II REGIONS; HII-REGIONS; ULTRACOMPACT; ACCRETION; DISKS;
D O I
10.3847/2041-8213/aad631
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A number of ultracompact H II regions in Galactic star-forming environments have been observed to vary significantly in radio flux density on timescales of 10-20 years. Theory predicted that such variations should occur when the accretion flow that feeds a young massive star becomes unstable and clumpy. We have targeted the massive star-forming region W49A with the Karl G. Jansky Very Large Array for observations at 3.6 cm with the B-configuration at similar to 0 ''.8 resolution, to compare to nearly identical observations taken almost 21 years earlier (2015 February and 1994 August). Most of the sources in the crowded field of ultracompact and hypercompact H II regions exhibit no significant changes over this time period. However, one source, W49A/G2, decreased by 20% in peak intensity (from 71 +/- 4 mJy/beam to 57 +/- 3 mJy/beam), and 40% in integrated flux (from 0.109 +/- 0.011 Jy to 0.067 +/- 0.007 Jy), where we cite 5 sigma errors in peak intensity, and 10% errors in integrated flux. We present the radio images of the W49A region at the two epochs, the difference image that indicates the location of the flux density decrease, and discuss explanations for the flux density decrease near the position of W49A/G2.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] The distribution of warm gas in the G327.3-0.6 massive star-forming region
    Leurini, S.
    Wyrowski, F.
    Herpin, F.
    van der Tak, F.
    Guesten, R.
    van Dishoeck, E. F.
    ASTRONOMY & ASTROPHYSICS, 2013, 550
  • [22] Chemical Evolution of N2H+ in Six Massive Star-forming Region
    Yu, Nai-Ping
    Xu, Jin-Long
    Wang, Jun-Jie
    Liu, Xiao-Lan
    ASTROPHYSICAL JOURNAL, 2018, 865 (02)
  • [23] Infrared polarimetry of the southern massive star-forming region G333.6-0.2
    Fujiyoshi, T
    Smith, CH
    Wright, CM
    Moore, TJT
    Aitken, DK
    Roche, PF
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2001, 327 (01) : 233 - 243
  • [24] Near-infrared observations of outflows and young stellar objects in the massive star-forming region AFGL 5180
    Crowe, S.
    Fedriani, R.
    Tan, J. C.
    Whittle, M.
    Zhang, Y.
    Garatti, A. Caratti O.
    Farias, J. P.
    Gautam, A.
    Telkamp, Z.
    Rothberg, B.
    Grudic, M.
    Andersen, M.
    Cosentino, G.
    Garcia-Lopez, R.
    Rosero, V.
    Tanaka, K.
    Pinna, E.
    Rossi, F.
    Miller, D.
    Agapito, G.
    Plantet, C.
    Ghose, E.
    Christou, J.
    Power, J.
    Puglisi, A.
    Briguglio, R.
    Brusa, G.
    Taylor, G.
    Zhang, X.
    Mazzoni, T.
    Bonaglia, M.
    Esposito, S.
    Veillet, C.
    ASTRONOMY & ASTROPHYSICS, 2024, 682
  • [25] HIGH-RESOLUTION STUDY OF THE MASSIVE STAR-FORMING REGION IRAS 06061+2151
    Trinidad, M. A.
    Rodriguez, T.
    ASTRONOMICAL JOURNAL, 2010, 140 (06) : 1739 - 1746
  • [26] [CII] emission properties of the massive star-forming region RCW 36 in a filamentary molecular cloud
    Suzuki, T.
    Oyabu, S.
    Ghosh, S. K.
    Ojha, D. K.
    Kaneda, H.
    Maeda, H.
    Nakagawa, T.
    Ninan, J. P.
    Vig, S.
    Hanaoka, M.
    Saito, F.
    Fujiwara, S.
    Kanayama, T.
    ASTRONOMY & ASTROPHYSICS, 2021, 651
  • [27] Interaction between ionized and molecular gas in the active star-forming region W31
    Kim, KT
    Koo, BC
    ASTROPHYSICAL JOURNAL, 2002, 575 (01) : 327 - 336
  • [28] Monitoring a methanol maser flare associated with the massive star-forming region G358.93-0.03
    Volvach, A. E.
    Volvach, L. N.
    Larionov, M. G.
    MacLeod, G. C.
    van den Heever, S. P.
    Sugiyama, K.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 494 (01) : L59 - L63
  • [29] WFCAM, Spitzer/IRAC and SCUBA observations of the massive star-forming region DR21/W75 -: II.: Stellar content and star formation
    Kumar, M. S. N.
    Davis, C. J.
    Grave, J. M. C.
    Ferreira, B.
    Froebrich, D.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2007, 374 (01) : 54 - 62
  • [30] Internal Proper Motions of Methanol Masers at 6.7 GHz in Massive Star-Forming Region Onsala 1
    Sugiyama, Koichiro
    Fujisawa, Kenta
    Doi, Akihiro
    Honma, Mareki
    Isono, Yasuko
    Kobayashi, Hideyuki
    Mochizuki, Nanako
    Murata, Yasuhiro
    Sawada-Satoh, Satoko
    Wajima, Kiyoaki
    PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN, 2011, 63 (01) : 53 - 61