Hierarchical distributed model predictive control based on fuzzy negotiation

被引:14
作者
Masero, Eva [1 ]
Francisco, Mario [2 ]
Maestre, Jose M. [1 ]
Revollar, Silvana [2 ]
Vega, Pastora [3 ]
机构
[1] Univ Seville, Escuela Tecn Super Ingn, Dept Syst Engn & Automat, Av Camino Descubrimientos S-N, Seville 41092, Spain
[2] Univ Salamanca, Escuela Tecn Super Ingn Ind, Dept Comp & Automat, Av Fernando Ballesteros, Salamanca 37700, Spain
[3] Univ Salamanca, Fac Ciencias, Dept Comp & Automat, Plaza Merced S-N, Salamanca 37008, Spain
基金
欧洲研究理事会;
关键词
Model predictive control; Hierarchical distributed control; Pairwise negotiations; Fuzzy logic; Multi-agent systems; Stability; DESIGN; MPC; COMMUNICATION;
D O I
10.1016/j.eswa.2021.114836
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This work presents a hierarchical distributed model predictive control approach for multiple agents with cooperative negotiations based on fuzzy inference. Specifically, a fuzzy-based two-layer control architecture is proposed. In the lower control layer, there are pairwise negotiations between agents according to the couplings and the communication network. The resulting pairwise control sequences are sent to a coordinator in the upper control layer, which merges them to compute the final ones. Furthermore, conditions to guarantee feasibility and stability in the closed-loop system are provided. The proposed control algorithm has been tested on an eightcoupled tank plant via simulation.
引用
收藏
页数:13
相关论文
共 42 条
  • [1] A comparative analysis of distributed MPC techniques applied to the HD-MPC four-tank benchmark
    Alvarado, I.
    Limon, D.
    Munoz de la Pena, D.
    Maestre, J. M.
    Ridao, M. A.
    Scheu, H.
    Marquardt, W.
    Negenborn, R. R.
    De Schutter, B.
    Valencia, F.
    Espinosa, J.
    [J]. JOURNAL OF PROCESS CONTROL, 2011, 21 (05) : 800 - 815
  • [2] [Anonymous], 2003, CRC P CONTROL SER
  • [3] Bai Y., 2006, Advanced Fuzzy Logic Technologies in Industrial Applications, P17, DOI DOI 10.1007/978-1-84628-469-4_2
  • [4] Berglind J. B., 2012, IFAC P VOLUMES, V45, P342, DOI [DOI 10.3182/20120823-5-NL-3013.00058, https://doi.org/10.3182/20120823-5-NL-3013.00058, DOI 10.3182/20120823-5-nl-3013.00058]
  • [5] Darivianakis G., 2019, IEEE T AUTOMAT CONTR
  • [6] Doan M., 2014, DISTRIBUTED MODEL PR, V69, P393
  • [7] Delay-dependent stabilisation of systems with time-delayed state and control: application to a quadruple-tank process
    El Haoussi, F.
    Tissir, E. H.
    Tadeo, F.
    Hmamed, A.
    [J]. INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2011, 42 (01) : 41 - 49
  • [8] Multi-agent distributed model predictive control with fuzzy negotiation
    Francisco, M.
    Mezquita, Y.
    Revollar, S.
    Vega, P.
    De Paz, Juan F.
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2019, 129 : 68 - 83
  • [9] Herceg M, 2013, 2013 EUROPEAN CONTROL CONFERENCE (ECC), P502
  • [10] An agent-based fuzzy constraint-directed negotiation model for solving supply chain planning and scheduling problems
    Hsu, Chia-Yu
    Kao, Bo-Ruei
    Ho, Van Lam
    Li, Lin
    Lai, K. Robert
    [J]. APPLIED SOFT COMPUTING, 2016, 48 : 703 - 715