Electric field enhanced hydrogen storage on polarizable materials substrates

被引:243
作者
Zhou, J. [1 ,2 ,3 ]
Wang, Q. [4 ]
Sun, Q. [1 ,2 ,4 ]
Jena, P. [4 ]
Chen, X. S. [3 ]
机构
[1] Peking Univ, Dept Adv Mat & Nanotechnol, Beijing 100871, Peoples R China
[2] Peking Univ, Ctr Appl Phys & Technol, Beijing 100871, Peoples R China
[3] Chinese Acad Sci, Shanghai Inst Tech Phys, Natl Lab Infrared Phys, Shanghai 200083, Peoples R China
[4] Virginia Commonwealth Univ, Dept Phys, Richmond, VA 23284 USA
基金
中国国家自然科学基金;
关键词
energetics; kinetics; nanomaterials; polarization; reversibility; MOLECULAR-HYDROGEN; DISPERSION FORCES; COMPLEXES; BREAKDOWN; BINDING;
D O I
10.1073/pnas.0905571107
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Using density functional theory, we show that an applied electric field can substantially improve the hydrogen storage properties of polarizable substrates. This new concept is demonstrated by adsorbing a layer of hydrogen molecules on a number of nanomaterials. When one layer of H-2 molecules is adsorbed on a BN sheet, the binding energy per H-2 molecule increases from 0.03 eV/H-2 in the field-free case to 0.14 eV/H-2 in the presence of an electric field of 0.045 a.u. The corresponding gravimetric density of 7.5 wt% is consistent with the 6 wt% system target set by Department of Energy for 2010. The strength of the electric field can be reduced if the substrate is more polarizable. For example, a hydrogen adsorption energy of 0.14 eV/H-2 can be achieved by applying an electric field of 0.03 a.u. on an AlN substrate, 0.006 a.u. on a silsesquioxane molecule, and 0.007 a.u. on a silsesquioxane sheet. Thus, application of an electric field to a polarizable substrate provides a novel way to store hydrogen; once the applied electric field is removed, the stored H-2 molecules can be easily released, thus making storage reversible with fast kinetics. In addition, we show that materials with rich low-coordinated nonmetal anions are highly polarizable and can serve as a guide in the design of new hydrogen storage materials.
引用
收藏
页码:2801 / 2806
页数:6
相关论文
共 39 条
[1]   Junctions between a boron nitride nanotube and a boron nitride sheet [J].
Baowan, Duangkamon ;
Cox, Barry J. ;
Hill, James M. .
NANOTECHNOLOGY, 2008, 19 (07)
[2]   DENSITY-FUNCTIONAL THERMOCHEMISTRY .3. THE ROLE OF EXACT EXCHANGE [J].
BECKE, AD .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (07) :5648-5652
[3]   Optimum conditions for adsorptive storage [J].
Bhatia, SK ;
Myers, AL .
LANGMUIR, 2006, 22 (04) :1688-1700
[4]   Alkali-metal-induced enhancement of hydrogen adsorption in C60 fullerene:: An ab initio study [J].
Chandrakumar, K. R. S. ;
Ghosh, Swapan K. .
NANO LETTERS, 2008, 8 (01) :13-19
[5]   Vibrations and dissociation of molecules in strong electric fields:: N2, NACl, H2O and SF6 [J].
Delley, B .
THEOCHEM-JOURNAL OF MOLECULAR STRUCTURE, 1998, 434 :229-237
[6]   AN ALL-ELECTRON NUMERICAL-METHOD FOR SOLVING THE LOCAL DENSITY FUNCTIONAL FOR POLYATOMIC-MOLECULES [J].
DELLEY, B .
JOURNAL OF CHEMICAL PHYSICS, 1990, 92 (01) :508-517
[7]   From molecules to solids with the DMol3 approach [J].
Delley, B .
JOURNAL OF CHEMICAL PHYSICS, 2000, 113 (18) :7756-7764
[8]  
DELLEY B, 2002, DMOL3 VER 4 2
[9]   Hydrogen storage in microporous metal-organic frameworks with exposed metal sites [J].
Dinca, Mircea ;
Long, Jeffrey R. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (36) :6766-6779
[10]   Molecular modeling study of hydrogen storage in carbon nanotubes [J].
Dodziuk, H ;
Dolgonos, G .
CHEMICAL PHYSICS LETTERS, 2002, 356 (1-2) :79-83