Electrochemical scanning tunneling microscopy analysis of the surface reactions on graphite basal plane in ethylene carbonate-based solvents and propylene carbonate

被引:112
作者
Inaba, M [1 ]
Siroma, Z [1 ]
Kawatate, Y [1 ]
Funbiki, A [1 ]
Ogumi, Z [1 ]
机构
[1] Kyoto Univ, Grad Sch Engn, Dept Energy & Hydrocarbon Chem, Sakyo Ku, Kyoto 60601, Japan
关键词
secondary lithium batteries; graphite negative electrodes; solvent decomposition; surface protective film; scanning tunneling microscopy;
D O I
10.1016/S0378-7753(96)02555-4
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In order to elucidate the mechanism of surface film formation on graphite negative electrodes of rechargeable lithium-ion batteries, topographical changes of the basal plane of a highly oriented pyrolytic graphite were observed in a few electrolyte solutions under polarization by electrochemical scanning tunneling microscopy. In 1 M LiClO4/ethylene carbonate (EC) + diethyl carbonate, a hill-like structure of similar to 1 nm height appeared on the surface of highly oriented pyrolytic graphite at 0.95 V versus Li/Li+, and then changed at 0.75 V to irregular shaped blister-like features with a maximum height of similar to 20 nm. In 1 M LiClO4/EC + dimethoxyethane, hemispherical blisters of similar to 20 nm height appeared at 0.90 V. These morphology changes, hill and blister formation, were attributed to the inercalation of solvated Li+ ions into graphite interlayers and to the accumulation of its decomposed products, respectively. On the other hand, only rapid exfoliation and rupturing of graphite layers were observed in 1 M LiClO4/propylene carbonate (PC), which was considered to be responsible for ceaseless solvent decomposition when graphite electrodes are charged in PC-based solutions. From the observed topographical changes, it was concluded that the intercalation of solvated Li+ ions is a necessary step for stable surface film formation on graphite. (C) 1997 Elsevier Science S.A.
引用
收藏
页码:221 / 226
页数:6
相关论文
共 18 条
[1]   THE CATHODIC DECOMPOSITION OF PROPYLENE CARBONATE IN LITHIUM BATTERIES [J].
ARAKAWA, M ;
YAMAKI, JI .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1987, 219 (1-2) :273-280
[2]   THE CORRELATION BETWEEN THE SURFACE-CHEMISTRY AND THE PERFORMANCE OF LI-CARBON INTERCALATION ANODES FOR RECHARGEABLE ROCKING-CHAIR TYPE BATTERIES [J].
AURBACH, D ;
EINELI, Y ;
CHUSID, O ;
CARMELI, Y ;
BABAI, M ;
YAMIN, H .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1994, 141 (03) :603-611
[3]   FILMING MECHANISM OF LITHIUM-CARBON ANODES IN ORGANIC AND INORGANIC ELECTROLYTES [J].
BESENHARD, JO ;
WINTER, M ;
YANG, J ;
BIBERACHER, W .
JOURNAL OF POWER SOURCES, 1995, 54 (02) :228-231
[4]   PHASE-DIAGRAM OF LIXC6 [J].
DAHN, JR .
PHYSICAL REVIEW B, 1991, 44 (17) :9170-9177
[5]  
DEY AN, 1970, J ELECTROCHEM SOC, V117, P220
[6]  
EINELI T, 1995, ELECTROCHIM ACTA, V29, P259
[7]   STUDIES OF LITHIUM INTERCALATION INTO CARBONS USING NONAQUEOUS ELECTROCHEMICAL-CELLS [J].
FONG, R ;
VONSACKEN, U ;
DAHN, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1990, 137 (07) :2009-2013
[8]   CHARGE-DISCHARGE CHARACTERISTICS OF MESOPHASE-PITCH-BASED CARBON-FIBERS FOR LITHIUM CELLS [J].
IMANISHI, N ;
KASHIWAGI, H ;
ICHIKAWA, T ;
TAKEDA, Y ;
YAMAMOTO, O ;
INAGAKI, M .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1993, 140 (02) :315-320
[9]   IN-SITU RAMAN-STUDY ON ELECTROCHEMICAL LI-INTERCALATION INTO GRAPHITE [J].
INABA, M ;
YOSHIDA, H ;
OGUMI, Z ;
ABE, T ;
MIZUTANI, Y ;
ASANO, M .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1995, 142 (01) :20-26
[10]   Electrochemical scanning tunneling microscopy observation of highly oriented pyrolytic graphite surface reactions in an ethylene carbonate-based electrolyte solution [J].
Inaba, M ;
Siroma, Z ;
Funabiki, A ;
Ogumi, Z ;
Abe, T ;
Mizutani, Y ;
Asano, M .
LANGMUIR, 1996, 12 (06) :1535-1540