Multiscale analysis of out-of-plane masonry elements using different structural models at macro and microscale

被引:26
作者
Addessi, Daniela [1 ]
Di Re, Paolo [1 ]
Gatta, Cristina [1 ]
Sacco, Elio [2 ]
机构
[1] Sapienza Univ Rome, Dept Struct & Geotech Engn, Via Eudossiana 18, I-00184 Rome, Italy
[2] Univ Naples Federico II, Dept Struct Engn & Architecture, Via Claudio 21, I-80125 Naples, Italy
关键词
Multiscale model; Thick shell; Masonry; Damage-friction; 3D RVE; TFA approach; TRANSFORMATION FIELD ANALYSIS; NUMERICAL-ANALYSIS; HOMOGENIZATION; INPLANE; SHELLS; DAMAGE; PLASTICITY; FAILURE;
D O I
10.1016/j.compstruc.2020.106477
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A novel two-scale modeling approach, linking different structural models at macro and microscale, is proposed to describe response of masonry walls with periodic texture. At the higher macroscopic scale, the real heterogeneous material is modeled as a homogenized medium, considering the classical Mindlin-Reissner theory for flat shells. At the lower microscopic scale, a representative masonry Unit Cell (UC), accounting for the actual geometry, arrangement and nonlinear behavior of constituent materials, is analyzed in detail by resorting to a three-dimensional Cauchy model. The UC is modeled as the assembly of elastic bricks and nonlinear zero-thickness interfaces, in which the sliding frictional and damaging mechanisms are concentrated. To perform the macro-micro information transition a proper kinematic map is defined, whereas the upscaling process is performed via a homogenization procedure based on the Transformation Field Analysis (TFA), properly extended to the case of interfaces. The developed homogenization procedure invokes a generalized Hill-Mandel principle and requires to satisfy 'non-standard' constraints at the microlevel, for which the perturbed Lagrangian method is employed. Numerical applications are performed to prove the model efficiency in describing the response of a running bond UC subjected to in-plane and out-of-plane loads. Special attention is devoted to the analysis of shell bending and shear behavior, comparing the results obtained with the proposed model with those recovered by detailed micromechanical analyses. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:20
相关论文
共 31 条
[1]  
Addessi D, 2020, J MULTISCALE COMPUT
[2]   Micromechanical and multiscale computational modeling for stability analysis of masonry elements [J].
Addessi, Daniela ;
Di Re, Paolo ;
Sacco, Elio .
ENGINEERING STRUCTURES, 2020, 211
[3]   Homogenization of heterogeneous masonry beams [J].
Addessi, Daniela ;
Sacco, Elio .
MECCANICA, 2018, 53 (07) :1699-1717
[4]   Enriched plane state formulation for nonlinear homogenization of in-plane masonry wall [J].
Addessi, Daniela ;
Sacco, Elio .
MECCANICA, 2016, 51 (11) :2891-2907
[5]   Nonlinear analysis of masonry panels using a kinematic enriched plane state formulation [J].
Addessi, Daniela ;
Sacco, Elio .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2016, 90 :194-214
[6]   A micromechanical approach for the Cosserat modeling of composites [J].
Addessi, Daniela ;
De Bellis, Maria Laura ;
Sacco, Elio .
MECCANICA, 2016, 51 (03) :569-592
[7]   Optimization clustering technique for PieceWise Uniform Transformation Field Analysis homogenization of viscoplastic composites [J].
Alaimo, Gianluca ;
Auricchio, Ferdinando ;
Marfia, Sonia ;
Sacco, Elio .
COMPUTATIONAL MECHANICS, 2019, 64 (06) :1495-1516
[8]   DERIVATION OF THE INPLANE ELASTIC CHARACTERISTICS OF MASONRY THROUGH HOMOGENIZATION THEORY [J].
ANTHOINE, A .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 1995, 32 (02) :137-&
[9]  
Anthoine A, 1997, COMMUN NUMER METH EN, V13, P319
[10]   Second-order computational homogenization of heterogeneous materials with periodic microstructure [J].
Bacigalupo, Andrea ;
Gambarotta, Luigi .
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2010, 90 (10-11) :796-811