GPU-Accelerated Tensor Decomposition for Moving Object Detection from Multimodal Imaging

被引:2
作者
Bin, Junchi [1 ]
Kang, Meng [1 ]
Liu, Zheng [1 ]
机构
[1] Univ British Columbia, Sch Engn, Okanagan Campus, Kelowna, BC V1V 1V7, Canada
来源
2020 IEEE SENSORS | 2020年
关键词
GPU acceleration; tensor decomposition; multimodal image sensors; moving object detection;
D O I
10.1109/sensors47125.2020.9278924
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Moving object detection is a crucial component of video surveillance. With advances in sensory technologies, a multimodal image sensor can collect various signals such as infrared signals and depth signals for accurate moving object detection. Recent approaches regard these signals as a single tensor and apply tensor decomposition for classifying moving objects. However, the size of tensor is usually large from the multimodal image sensor, which makes the decomposition extremely slow in practice. In this paper, a parallel framework is proposed to take advantage of the graphics processing unit (GPU) for accelerating tensor decomposition. Compared with the original tensor decomposition in the central processing unit (CPU), our best GPU implementation achieves up to 380% speedup in moving object detection on public data sets.
引用
收藏
页数:4
相关论文
共 10 条
[1]  
[Anonymous], 2013, ADV NEURAL INFORM PR
[2]   Introduction to the Issue on Robust Subspace Learning and Tracking: Theory, Algorithms, and Applications [J].
Bouwmans, T. ;
Vaswani, N. ;
Rodriguez, P. ;
Vidal, R. ;
Lin, Z. .
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2018, 12 (06) :1127-1130
[3]  
Chakaravarthy V, 2018, SC18
[4]   Fast Smoke Detection for Video Surveillance Using CUDA [J].
Filonenko, Alexander ;
Caceres Hernandez, Danilo ;
Jo, Kang-Hyun .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2018, 14 (02) :725-733
[5]   Optimizing sparse tensor times matrix on GPUs [J].
Ma, Yuchen ;
Li, Jiajia ;
Wu, Xiaolong ;
Yan, Chenggang ;
Sun, Jimeng ;
Vuduc, Richard .
JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2019, 129 :99-109
[6]  
Okuta R., 2017, P WORKSH MACH LEARN
[7]   Multi-modal RGB-Depth-Thermal Human Body Segmentation [J].
Palmero, Cristina ;
Clapes, Albert ;
Bahnsen, Chris ;
Mogelmose, Andreas ;
Moeslund, Thomas B. ;
Escalera, Sergio .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2016, 118 (02) :217-239
[8]   Online Stochastic Tensor Decomposition for Background Subtraction in Multispectral Video Sequences [J].
Sobral, Andrews ;
Javed, Sajid ;
Jung, Soon Ki ;
Bouwmans, Thierry ;
Zahzah, El-hadi .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOP (ICCVW), 2015, :946-953
[9]  
Thomas J.-B, 2014, IEEE ICRA WORKSH HON
[10]   GPUTENSOR: Efficient tensor factorization for context-aware recommendations [J].
Zou, Benyou ;
Li, Cuiping ;
Tan, Liwen ;
Chen, Hong .
INFORMATION SCIENCES, 2015, 299 :159-177