On the equation x(x+d)...(x+(k-1)d)=by2

被引:4
作者
Brindza, B
Hajdu, L
Ruzsa, IZ
机构
[1] Univ Debrecen, Inst Math & Informat, H-4010 Debrecen, Hungary
[2] Hungarian Acad Sci, Alfred Renyi Inst Math, H-1364 Budapest, Hungary
关键词
D O I
10.1017/S0017089500020115
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we give a new bound for the solutions x of the title equation, provided that k greater than or equal to 8. This bound is polynomial in d. Moreover, under the same condition, a similar bound for the number of solutions in (x, k, y, l) is given.
引用
收藏
页码:255 / 261
页数:7
相关论文
共 25 条
[1]  
[Anonymous], 1951, J LOND MATH SOC
[2]  
Bennett MA, 1998, J REINE ANGEW MATH, V498, P173
[3]   Irreducibility of polynomials and arithmetic progressions with equal products of terms [J].
Beukers, F ;
Shorey, TN ;
Tijdeman, R .
NUMBER THEORY IN PROGRESS, VOLS 1 AND 2: VOL 1: DIOPHANTINE PROBLEMS AND POLYNOMIALS; VOL 2: ELEMENTARY AND ANALYTIC NUMBER THEORY;, 1999, :11-26
[4]  
Darmon H, 1997, J REINE ANGEW MATH, V490, P81
[5]   PRODUCT OF CONSECUTIVE INTEGERS IS NEVER A POWER [J].
ERDOS, P ;
SELFRIDGE, JL .
ILLINOIS JOURNAL OF MATHEMATICS, 1975, 19 (02) :292-301
[6]  
Erdos P., 1939, J LOND MATH SOC, V14, P194, DOI DOI 10.1112/JLMS/S1-14.3.194
[7]  
FILAKOVSZKY P, IN PRESS RESOLUTION
[8]  
Gyory K, 1998, ACTA ARITH, V83, P87
[9]  
Gyory K, 1997, ACTA ARITH, V80, P289
[10]  
Györy K, 1999, DEV MATH, V2, P145