A survey of in-spin transfer torque MRAM computing

被引:24
作者
Cai, Hao [1 ]
Liu, Bo [1 ]
Chen, Juntong [1 ]
Naviner, Lirida [2 ]
Zhou, Yongliang [1 ]
Wang, Zhen [3 ]
Yang, Jun [1 ]
机构
[1] Southeast Univ, Natl ASIC Syst Engn Res Ctr, Nanjing 210096, Peoples R China
[2] Telecom Paris, Lab Traitement & Commun Informat, F-91120 Palaiseau, France
[3] Nanjing Prochip Elect Technol Co Ltd, Nanjing 210000, Peoples R China
基金
中国国家自然科学基金;
关键词
spin-transfer torque-magnetoresistive random access memory; in-memory computing; magnetic tunnel junction; analog computing; nonvolatile memory; Boolean logic; neural network; SPINTRONIC PROCESSING UNIT; MAGNETIC TUNNEL-JUNCTIONS; ORBIT TORQUE; STT-MRAM; MEMORY; CIRCUIT; SYSTEM; SRAM;
D O I
10.1007/s11432-021-3220-0
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In traditional von Neumann computing architectures, the essential transfer of data between the processor and memory hierarchies limits the computational efficiency of next-generation system-on-a-chip. The emerging in-memory computing (IMC) approach addresses this issue and facilitates the movement of significant data and rapid computations. Among the different memory types, intrinsic energy efficiency is demonstrated by in-magnetic random access memory (MRAM) computing with a low-power spintronic magnetic tunnel junction device and hybrid integration at an advanced complementary metal-oxide semiconductor node. This study reviews state-of-the-art techniques for managing IMC with an emphasis on spin-transfer torque-MRAM computing via design schemes at the bit-cell, circuit, and system levels. In addition, this study presents effective design techniques and potential challenges and demonstrates the existing limitations of in-MRAM computing and potential methods for overcoming these issues. This study also considers the design technology co-optimization from the IMC perspective.
引用
收藏
页数:15
相关论文
共 107 条
  • [1] Equivalent-accuracy accelerated neural-network training using analogue memory
    Ambrogio, Stefano
    Narayanan, Pritish
    Tsai, Hsinyu
    Shelby, Robert M.
    Boybat, Irem
    di Nolfo, Carmelo
    Sidler, Severin
    Giordano, Massimo
    Bodini, Martina
    Farinha, Nathan C. P.
    Killeen, Benjamin
    Cheng, Christina
    Jaoudi, Yassine
    Burr, Geoffrey W.
    [J]. NATURE, 2018, 558 (7708) : 60 - +
  • [2] Angizi S., 2018, P ACMESDAIEEE DESIGN, P1, DOI DOI 10.1109/DAC.2018.8465860
  • [3] AlignS: A Processing-In-Memory Accelerator for DNA Short Read Alignment Leveraging SOT-MRAM
    Angizi, Shaahin
    Sun, Jiao
    Zhang, Wei
    Fan, Deliang
    [J]. PROCEEDINGS OF THE 2019 56TH ACM/EDAC/IEEE DESIGN AUTOMATION CONFERENCE (DAC), 2019,
  • [4] [Anonymous], 2018, ARXIV181112179
  • [5] [Anonymous], 2012, 2012 INT JT C NEUR N, DOI DOI 10.1109/HPCA.2012.6169027
  • [6] [Anonymous], 2018, P S VLSI CIRC, DOI [DOI 10.1109/VLSIC.2018.8502431, 10.1109/VLSIC.2018.8502431]
  • [7] Bocquet M., 2018, IEDM
  • [8] Bortolotti D, 2015, DES AUT TEST EUROPE, P1611
  • [9] Boujamaa E, 2020, P IEEE S VLSI TECHN, P1
  • [10] Interplay Bitwise Operation in Emerging MRAM for Efficient In-memory Computing
    Cai, Hao
    Jiang, Honglan
    Zhou, Yongliang
    Han, Menglin
    Liu, Bo
    [J]. CCF TRANSACTIONS ON HIGH PERFORMANCE COMPUTING, 2020, 2 (03) : 282 - 296