Conformal dimension and Gromov hyperbolic groups with 2-sphere boundary

被引:54
作者
Bonk, M [1 ]
Kleiner, B [1 ]
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
关键词
Gromov hyperbolic groups; Cannon's conjecture; quasisymmetric maps;
D O I
10.2140/gt.2005.9.219
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Suppose G is a Gromov hyperbolic group, and partial derivative(infinity)G is quasisymmetrically homeomorphic to an Ahlfors Q-regular metric 2-sphere Z with Ahlfors regular conformal dimension Q. Then G acts discretely, cocompactly, and isometrically on H-3.
引用
收藏
页码:219 / 246
页数:28
相关论文
共 23 条
[11]   Quasiconformal maps in metric spaces with controlled geometry [J].
Heinonen, J ;
Koskela, P .
ACTA MATHEMATICA, 1998, 181 (01) :1-61
[12]  
Heinonen J., 2001, Lectures on analysis on metric spaces, DOI 10.1007/978-1-4613-0131-8
[13]  
KEITH S, IN PRESS GEOM FUNCT
[14]   Regularity of quasi-minimizers on metric spaces [J].
Kinnunen, J ;
Shanmugalingam, N .
MANUSCRIPTA MATHEMATICA, 2001, 105 (03) :401-423
[15]   Ahlfors Q-regular spaces with arbitrary Q > 1 admitting weak Poincare inequality [J].
Laakso, TJ .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2000, 10 (01) :111-123
[16]   A hyperbolic group is determined by its boundary [J].
Paulin, F .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1996, 54 :50-74
[17]  
Semmes S., 2001, OXFORD MATH MONOGRA
[18]  
Semmes S., 1996, Selecta Math. (N.S.), V2, P155, DOI DOI 10.1007/BF01587936
[19]  
Sullivan D., 1979, Inst. Hautes Etudes Sci. Publ. Math, P171
[20]   ON QUASI-CONFORMAL GROUPS [J].
TUKIA, P .
JOURNAL D ANALYSE MATHEMATIQUE, 1986, 46 :318-346