Conformal dimension and Gromov hyperbolic groups with 2-sphere boundary

被引:54
作者
Bonk, M [1 ]
Kleiner, B [1 ]
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
关键词
Gromov hyperbolic groups; Cannon's conjecture; quasisymmetric maps;
D O I
10.2140/gt.2005.9.219
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Suppose G is a Gromov hyperbolic group, and partial derivative(infinity)G is quasisymmetrically homeomorphic to an Ahlfors Q-regular metric 2-sphere Z with Ahlfors regular conformal dimension Q. Then G acts discretely, cocompactly, and isometrically on H-3.
引用
收藏
页码:219 / 246
页数:28
相关论文
共 23 条
[1]   Conformal dimension of the antenna set [J].
Bishop, CJ ;
Tyson, JT .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (12) :3631-3636
[2]  
Bonk M, 2002, J DIFFER GEOM, V61, P81
[3]   Quasisymmetric parametrizations of two-dimensional metric spheres [J].
Bonk, M ;
Kleiner, B .
INVENTIONES MATHEMATICAE, 2002, 150 (01) :127-183
[4]   Conformal metrics on the unit ball in euclidean space [J].
Bonk, M ;
Koskela, P ;
Rohde, S .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1998, 77 :635-664
[5]  
Bourdon M, 2003, J REINE ANGEW MATH, V558, P85
[6]   Rigidity of quasi-isometries for some hyperbolic buildings [J].
Bourdon, M ;
Pajot, H .
COMMENTARII MATHEMATICI HELVETICI, 2000, 75 (04) :701-736
[7]  
BUYALO S, VOLUME ENTROPY HYPER
[8]   Differentiability of Lipschitz functions on metric measure spaces [J].
Cheeger, J .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1999, 9 (03) :428-517
[9]   PATTERSON-SULLIVAN MEASUREMENTS ON THE BOUNDARY OF A GROMOV HYPERBOLIC SPACE [J].
COORNAERT, M .
PACIFIC JOURNAL OF MATHEMATICS, 1993, 159 (02) :241-270
[10]  
HAJLASZ P, 2000, MEM AM MATH SOC, V668